AD-A118 731 PAR TECHNOLOGY CORP NEW HARTFORD NY Fr6 9/2 ‘
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM., OLPARS V1. PRO==ETC(U)
JUN 82 S E HAEHN' D MORRIS

UNCLASSIFIED PAR-B2-15

illlllllll |
—B -

‘pHP’ PAR TECHNOLOGCY CORPORATION

A A118731

Approved for public release:
distribution unlimited

82 vo a9 027

N T : - - rpemd

FELAD INGTRUCTIONS

REPORT DOCUMENTATION PAGE HEFORE COMPLETING FORM

1. REPORT NUMBER 2 GOVY ACCESSION NO.l 3 RECIPIENT'S CATALOG NUMBER
e
AD AnS7 3/
4. TITLE (and Subtitie) S. TYPE OF REPORT & PERIOD COVERED
OLPARS Programmer and System
OLPARS VI (On-Line Pattern Analysis and Maintenance Manual
Recognition System) 6. PERFORMING ORG. REPORT NUMBER
Fret T 82-15%
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Mr. Steven E. Haehn
Ms. Donna Morris

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

AREA & WORK UNIT NUMBERS

PAR Technology Corporation
Rt #5, Seneca Plaza
New Hartford, New York 13413 .
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

June 18, 1982

. NUMBER OF PAGES

Department of Defense - =
Washington, D. C.

14. MONITORING AGENCY NAME & ADDRESS(if difterent from Controlling Otlice) 15. SECURITY CL ASS. (of thia report)

Same As Block 11 UNCLASSIFIED

1Sa. DECL ASSIFICATION/DOWNGRADING :
SCHEDULE j

i

16. DiS” 1iBUTION STATEMENT (of thia Report) ‘

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 1f different from Report)

18. SUPPLEMENTARY NOTES

i

I

19. KEY WORDS (Continue on reverse side if necessary and identify by block number) ‘
Pattern Recognition, Structure Analysis, Discriminant Analysis, !
Data Transformation, Feature Extraction, Feature Evaluation '

)

b

Cluster Analysis, Classification Computer Software

20 ABSTRACT (Tantinue an reverss side {f necessary and identify by block number)

The OLPARS Programmer and System Maintenance Manual (or Programmer's Refer- b
ence Manual) contains the detailed information about the structure of all the '
files used in "portable" OLPARS. The manual also describes how to access the
information contained in these files. A separate section describes the
different "displays" OLPARS Generates, along with detailed information about
the contents of the user's "display" files. Terminal and text-file input and
output packages are described in detail here, also.

<
va

DD , 05", 1473 €oimon of 1 nov 6515 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entersd)

Zrcgrammer
an

3Svstem Malntenance Manual

Q.

CLPARS VI

CHNOLOGY CORPCRATZION
e 5, Seneca Plaza
tford, New Yorx 13413

Authcrs

¥Mr. Steven E. Haehn
Ye. Donna A. Merris

PAR REFORT #32-1C

TAELE CF CCNTENTS

o X R R e L

[—

1. INTRCDUCTION & v v v v v v v v e v o e e e e e e e o T ‘
1.C CESIGN OVERVIEW .+ « « « v & & o o ¢ o o o « o o o o+ 2 !
1.1 THE CCMMAND INPUT PROCESSCR (CIP) « « . . 3 :
» 1.2 ABSTRACT FILES AND INPUT/QOUTPUT .+ ¢ ¢ ¢ « o &« o+ . B 3
! 1.3 COMMAND STRUCTURE « v « v & & v « o o o « + o« o . 4 ‘
i 1.4 GLPARS TRANSPORTATICN CCNSIDERATIONS « « « « « . . 5 >
i 2. THE EXECUTIVE v v v ¢ ¢ ¢ v o o o o o o o o « o o o o T jj
 § 2.0 INTRODUCTION & & v v o o o o ¢ o o o o o s o o o o o 1 (]
| 2.1 A CCMMAND INPUT PROCESSOR (CIP) v & o« o « o o o o« 7 "
:% 3. FILE MANAGEMENT & & ¢ &+ o o & o o« o o o s o o« o o o o« 9 |
3.C INTRODUCTION & v v v o 4 o o o o o o o o s s o« s o« ¢ ,;
3.1 DEFINITIONS &+ « 4 4 ¢ 4 ¢ o o o o o o s o « « & 10 g
3.2 FILE SYSTEM ROUTINES AND USAGE . « + « « & &« & o 13
3.2.1 Level I Manipulation Routines . . . « ¢« « « « 18
3.2.2 Level I File Access Routines . . + « + & + « « 22
3.2.3 Level II Routines . . o 4 o ¢ ¢ ¢ o o s « « o 2 ?
3 4. PORTABLE OLPARS FILEING STRUCTURE . . . « . . » « . 26 ?
4.0 INTROCUCTION & &+ v 4 o o o o o o o o o o o« o« o« « « 26 i
' 4.1 THE COMMUNICATIONS (CM) FILE . « « v v o o o« « « 27 é
b,z THE TREE INFCRMATION (TI) FILE(S) + . 29 f
4.2.1 Additional Considerations . . . « +« &+ « « o . 33 .
4,2.2 Numerical Example .« ¢« ¢ o« ¢ ¢ o o o« « o o « o« 40
. 4,2.3 Creating New Trees From Cld Trees 11
éi 4.3 OLPARS FILE "FREE"™ LISTS +« + v & v v o o« » o« « . 44
|
| .

5 . O, .- . omimrice e A 1 A
. T

5.0
5.1
5.1.1
5.1.2
5.1.32
5.1.4
5.1.5
5.1.6
5.2
5.2.1
5.3

5.4
6.
6.0
6.1
6.1.1

6‘1.2

TKELE GF CONTENTS (continuec)
THE TREE VECTCR (TV) FILE . . . «
THE TREE LIST (TL) FILE .+ v « o + o « v . .
THE LGGIC INFCRMATION (LI) FILE
THE LOGIC VALUE (LV) FILE . « « v & & & o .
THE LOGIC LIST (LL) FILE « v v o « o o o .+ .
THE SAVEL VECTCRS (SV) FILE . «

THE SAVEL TRANSFCRMATICN MATRIX (SM) FILE .

DISFLAYS . . . » . * . . . [L] . * . » . . L] . .
INTRODUCTION L]

TWC-SPACE LCISPLAYS (SCATTER AND CLUSTER) . .
THE DISPLAY INFCRMATICN (DPI) FILE
THE DISFLAY VALUE (DV) FILE « . .
THE PROJECTION VECTCR (PV) FILE
Screen Coordinates . . « . ¢ ¢« & ¢ « o o .
Scaling In Two-Space Lisplays . . « + +
Original And Current Min-Max Cocrdinates .

JNE-SPACE DISPLAYS (MICRO AND MACRO)
Screen Farameters For Cne Space Lisplays .

CISPLAY FILES USED IN MEASUREMENT EVALUATICN

CCMMANDS ¢ ¢ v ¢ ¢ o o o ¢ 2 o o o o s o &« &

CCNFUSICN MATRICES . +o + « & ¢ o o o o o o &

TERMINAL AND TEXT FILE INPUT/QUTPUT
INTRODUCTION » . L4 - L] Ll - L] L] » L] » L4

OLPARS TERMINAL CHARACTER INPUT/OQUTPLT . . .
Special Characters Within A Format Control
string L] L] * L] L] . * * L] L] - . L] L] . L] . L]

TRM PUT L] L] . . [. . L]

o L e SR

123
133
136
138
136

141
143

TAELE CF CCNTEKT: (continued)

- - - - S . ow G S S W e

-

6.1.3 TRMGET o ¢ ¢ ¢« ¢« o ¢ o o« o o o o o & o o o o o 146
' 6.1.% Some Notes Cn Terminal I/C 156
; 6.2 OLPARS TERMINAL GRAPHICS IMPUT/CUTPUT 157
€.2.1 Graphics Input Utility « « « « . 157
6.2.2 Graphics Cutput Utilities 158
6.2.3 TEXT ¢ & ¢ 6 o v o o v o v o o o o o o o o & o« 158
6.2.4 MARK ¢ ¢ ¢ ¢ ¢ v o ¢t o v o v e o o o o o o+ & 159
6.2.5 LINSEG . ¢ ¢ ¢ ¢ ¢ v & & 4 ¢« o o & o o s« « » o+ 159
6.2.6 ERASE « & ¢ ¢ ¢ o ¢ ¢« v 4 ¢« o o s s s o & « o 156
6.2.7 MOVE . ¢ ¢« ¢ ¢ ¢« o ¢ 4 o o o o o o o o s o « o 159
6.2.8 RCTNGL ¢ & & v v ¢ ¢ ¢ ¢ 4 ¢ v o o o o s « « « 159 '
6.3 OLPARS TEXT FILE INPUT/QUTPUT « « « « . 160 f é
6.3.1 FILGET + v v v « o v o « 4 v o o o o o « o o » 160 :
€.3.2 FILPUT o & o ¢ ¢ v 6 o o s o v o o o o s o & « 161 ’
6.3.3 Printing - OLPARS Cutput To A Computer Frinter 1€1
6.3.4 OLPARS Lata Tree Input/Output 163
6.3.5 Some Notes Cn Terminal And Text File I/0 . . . 1€3
7. OTHER FEATURES . . & ¢ ¢ ¢ ¢ 4 ¢« ¢ o & o o o« s o« « « 165
7.0 OLPARS FCRTRAN CCDE GENERATION . . . « « v &« + o « 165 .
7.1 OLPARS ECCLEAN STATEMENT INTERPRETER 167 !
7.2 BATCH PRCCESSING IN OLPARS . . ¢« « « « ¢« &« « « . 168 1
7.3 EXPANDABILITY & ¢ ¢ o & &« o o o « o s o o « « o« 172 |
8. SYSTEM CEPENDENCIES . . 4+ & & o & & « ¢ o o o o o« o« 174 ;‘
1
é
iii

FI
G.
H.

J‘

THE CCMMAND INFUT PRCCESSOR (CIP) CN RSX-11M

OLPARS RSX-11M SYSTEM LCEPENDENT FILES

STEPS TC TAKE IN EXPANDING OLPARS UNDER RSX-11M

CLPARS "HKELP"™ FUNCTION
OLPARS INSTRUMENTATICN PACKAGE

OLPARS RSX-11M I/O NOTES . . .
OLPARS PKOGRAMMER AIPES
OLPARS PARAMETER LIMITS
FILE TYPE NAMING CONVENTIOHNS OF
FILES e s s e s e e 8 e e e s

MISCELLANECUS TEXT FILES CREATEL BY OLPARS

COMMA}‘DS » . . . 3 . .

iv

.

OLPARS RSX11M

.

i i

I FIGURE LCCATICH !

Fig. - A MULTICS Command File (7-=1) . . . « + .+ « ¢« &« « « o« 188
Fig. - Between-Group Confusion VMatrix (5-2C¢) « + « ¢« « . . . 134
Fig. - Boolean Group Logic Elcck Format (4-16) €8
Fig. - Closed Lecision Eoundary Format (4-16) 77
l Fig. - Communications File (4-1) ¢ ¢« ¢ ¢« o ¢« & « « . 28
Fig. - Covariance positions in TI file (4-5) . . « ¢« « « o« o« 3
Fig. - Creating tree relying cn entry table (4-6) U3
Fig. - DI File Entry for Confusion Matrix (5-23) 138
Fig. - DI File Entry for Cne-Space (5-9) . . + ¢« ¢« ¢« ¢« + « o« 116
Fig. - DI File Entry for Rank Crder (5-15) . « . « « « « . o 128
Fig. - DI File Entry for Two-Space (5-2) . « ¢ « « ¢« &« « « o« 101
Fig. -~ DI File Header (Cne-Space) (5-1) . . . « « « 07
Fig. - CI File Header (Two-Space) (5-1) . . « « ¢« ¢ « « . o G7
Fig. - DI File Header for Confusion Matrix (5-22) 137
Fig. - LI File Header for hkank Crder (5-14) ., 127
Fig. - Display with Cluster Plot Grid (5-8) 113
Fig. - DV File Entry for Cne-Space (5-10) 12C
Fig. - DV File Entry for Two-Space (5-5) . . « + .+ . .« . . 106 ;
Fig. - DV File for One and Two-Space (5-3) . . . + + « . . . 103 .
Fig. - LV File for Rank Crder (5-1€) . « « ¢« ¢ + ¢ & « « . 126
Fig. - DV File Header, Cne, Two=-Space (5-4) 104
Fig. - Example of Fisher Pair Logic Block (4-13a) 64
Fig. - Example of CLPARS Command File . . « +. « ¢« « « . « . 184
Fig. - File Access and Control Table (3-1) « « « ¢« + « o « « 16
Fig. - File Code Table example (B-3) . . « « + ¢« ¢« &« « « - o 1G4
Fig. - Free List of a tree file (4-7) . . -)
Fig. - Hyperellipsoid Sub-block Format (4= 22) e v e e e e o &1
Fig. - Hyperrectanular Sub-block Format (4-20) 178
Fig. - Hypersphere Sub-block Format (4-21) . . . « « « . « . 8C
Fig. - Hypothetical screen coordinates (5-7) « + « « « « « « 110
Fig. - Independent Reject Strategy Format (4-23) &3
Fig. - Logic block linkage example (4-13) . . ¢« ¢ & ¢« « « « 62
Fig. - Logic Information file entry (4-12) . . . ¢« +« « « « « 55
Fig. - Logic Information file header (4-11) + « « « B3
Fig. - Logic List file (4-25) e e e e e e . 87
Fig. - Nearest Mean Vector Logic Format (u 17) e s e+« « o« 69
Fig. - Nearest Neighbor Logic Block Format (4-24) &4
Fig. - OLPAKS File I/0 paths on RSX11M (F-1) . « « . « + . . 223
Fig. - OLPARS History file (E-2) . . . c e & s s s s e+ . . 208
Fig. - CLPARS History file example (E- 3) e s 4 4 e s e e e « 210
Fig. - OLPARS Histoy file record (E-1) . «. « « . « ¢« « « « « 207
Fig. - CLPARS option "text" file (E=2) . « « + ¢« ¢« +« « « « . 186
Fig. - OLPARS option file (B-1) . . ¢ ¢« ¢« ¢« ¢« ¢ ¢« ¢« « « . . 184
: Fig. - One-Space [Display parameters (5-13) . e e e s . . 125
“ Fig. - One-Space Group Logic Block Feormat (4- 1&) . « « o+ 65
. Fig. - Optimal TCiscriminant Logic Block Format (4= 188) « « o« T5
i Fig. -~ Criginal and current min-max coord. states (5-8a) . . 117

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
rig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Pairwise Logic Block Format (4-1¢)
PV File for Cne and Two-Space (5<6)

S1 File Entry for Rank Crder (5-1§)

S1 File example (5-1G)

S1 File Entry for Cne-Space (5-12) .

S1 File EHeader for Cne-Space (5-11)
S1 File Header for Rank Crder (5-17)

Saved Matrix File Entry (4-28) ., .
Saved Matrix File header (U4-27) .
Saved Vector File (84-26)

Tree
Tree
Tree
Tree
Tree
Tree
Tree

Two-Space Group Logic Elock Format (4-15

Information file entry (4-3) . .
Information file example (4-5a) .
Information file header (4-2) . .
Information Structural pointers (4
List file (4-10) + ¢ & « .
Vector file (4-8)
Vector file entry (4-9)

1

Within-Group Confusion Matrix (5-21)

vi

*® & e e e o

® o & ® e & s e & ¢ o s e o

e & ® & & & e s e e e & = o s o »
® 8 & & 6 » 8 s & & ° e e » & ¢ e =
“ 8 & & e ® o e & o

e e o e o

72
107
124
131
132
123
13C

135

(€]
o
.
-3
P
o
-

ILTRCLUCTICL

This cccument is meant tc te used as & "reference" manuel by
CLFARS programmers or pecrle whc are tc¢ meintein ean existirng
"rcrtable"” CLPAKS system. MNost of the overview informaticn snculc

be gctten from the CLPARS V Final heport.

This menual contains infcrmation crnly e&abcocut the ‘" ling

structure, I/C packages end ESX-11M specific features cf "rer =le"
CLFARSE. CLeteiled informastiocn zbout specific CLFARS zrogrems ula
be c¢btained from the CLPARS V and/cr CLPAKSE VI Software he. 2€
Manuels.

Within these pages ycu will find informeticn zbout 1tre
structure of all the CLPARS files and how toc zccess the content cf
these files. A separate secticn descritbtes the different "cisplays"
CLPARS generates, along with detasiled irnformaticn atcut tre
contents of a user's "displey" files. Terminal and text-file input

ahda output peckages are discussec in cdetail here, aisc.

The tasic icdeas behind this current desigrn cf CLPARES &are the
meximum utilizetion of s stancderdized programming languege (FCRTERAL
IV) for algerithm processing and the abstract trezstment ¢t the dete
ty programs through the filirg system and irnput/cutput prccesses.
That is, all CLFARS prcoccessing rcutines will wutilize sutrcoutires

for accessirg data files and rerforming irput/ciiput,

Aedii

Corsecuently, tivse processing rotiires can be ezchiine cre syosten

irCepenuent end can te trensferrec to eny ccrputer cenfipureticr

neving ¢ FORTLAL IV comgiler. {r each Irglenentaticrn, crly =&
limiced runcer <¢f subtroutines, which &zre eclinre c¢r syster

ceérendent, Wwill have tc be reprogrammec. 1hus, the Key reasture cf

this cesign 1s the ccncept ¢t "portebility".

1.C LESIGH CVERVIEL

In this secticn, we present a btrief cverview of tne desiegn for

the "poruvatle"” (LPALKS; other secticns will discuss incividuelly,
) 1
in grezter cepth, the key features cf the desigr. i
As menticrned in the Intrccducticn, san impecrtant cesign

ingrecient 1in cdesigning & mwechine =&and terminzl inderencent, or

"rerteble", CLPAKS is the meximum wutilizaetion of FCRTRAL as =&
starnderc, high level languzge which can be compiled cn ery mechine
cn which CLPERS is likely to be implemented. Tlhis fezture, tle use
c¢f FCRTRAL, is almest a2 design "musti" in rezching the mechine
indeprerdent goszl. f.cwever, since different cemputers have
different crerating systems (scme computer instsllaticrns meay
utilize mcre then one operating system with the same ccmputer), enc
since operstor terminzls ancd other peripherals are not stzancerc,
iraerendence within the filing system and 1/C mechanism is

cgifficult tc achieve.

iy

“I“I . [

Thercicre, in (LPFALYS, whicht ig eevily file orientec conc
Ligtly cepencent cr graephic I/C end cpereatoir irnterecticrn, tie uie

ty. L€ clLer

[P

I only partislly meets the gcel c¢f pertetil
Key &Spects <¢f tnhe pcrtable C(LPALLS cesign ere: tlie Seperete
prciram apprcecr witn & ccmmand input processcr (CIF); the use <1
files fcr passir fparemeters enc ceteg; eard en InpuUt/CULtpul picCeage 1

fcr performirng 1/C. bach of these cereas wil e ciscLssec

(o]
ith

seperately ir subsecuent sections.

1.1 TLE CCHEAMNDL INLFUT PRCCESSCER (CIF)

Frem system tc syster., prcgrams ere initiatec (stertec ug)]
ci.fferently. The CIP 1is cdesigred tc cvercome these differences.
tech CLFALS functicn is cesigned s z seperate prcgram &arcd¢ sheoulcg
in 1itself te rterteble. ir crder tc meke the initisticn cf eecth
prcgram uniform, there is & system-cepencdent mocdule, the CIF, which
acts as &n interface GCtetween CLPARS &nd the user. iris
mini-executive &accepts the CLPARS program neme &anc perfcrms any

system reguired cperations needed to cause theat program tc rurn.

The CIP, =zlcng with the sepsrete prcgram &pprecach, will
support portability, mcdulerity, ezsse cf mainterarnce and exgansicrn,
and promcte structurel freedom in ccmmancd execution. The CIF 1is
discussed in detail in Sectiorn 2 and the cesign fcr the CiF uncer

ESX-11M v3.Z2 can be found in Appendix A ¢f this mearnuel.

L)

_nirgcucticn == 3
CTRaCy PILES ALL ILELY/LLTFUD

1.2 «LLTRACT FILELD ALL ILBLT/ZCLTEUT

In crcer tc eccenmcedete veoricus filing systenms, worce sizes enc

1/¢ feculiecrities 1intc the cesign cf the pertecle (LFALRS, eect cf

(]
1

tiie ircivicual progrems which inplemert & functicr will treat fi

ct

cets ene I/C ebstractly. That is, the prcgrems will "kncew" whe

cezta is irn & file, arg¢ will czll & subrcutire tc stcre cr retrieve

cr
h
n

cte. Thhe sutroutine, co¢r ©possitly 1levels ct sukrcutines,
"hrcw" the tormet cf the files and hcow tc eccess the physicel cete

reccrags.

I/, particularly grapnic 1/C, will =&also Lte =ebstractec Ly
subrcutire <calls. Thus, the individucl progrems wnich perfcrm the
CLPARS ccmmanas will be completely system incdeperncernt; crly the
subtrcutines, which translste the abstract recuests intc specific
ccce for a particular system, will be systerm or terminel dependcdent.

1. CChIkANL STRUCTURE

-

The ccmmend structure (see CLFARS V Finzl FReport) fcr portable
CLFARS hes Dbeen kept similar to that o¢f the Multics CLPARS
Cperating System (MCCS). The complete structural freedem of MNCCS
has been retained. Complete designs for the programs that will
carry ocut user ccmmands and all necessary subrcutines can te fcunc
in the CLFARS V-VI Program Specifircations. T[letailed cescripticns
of all the prcgrams that have beer written wunder the CLFARS VI
contract can be found in the CLPAKSE VI Software hkeference lanusl

(SEM). The CLPARS V Software hReference 1lanual <c¢cnteins prcgram

PRRVURTE

Irtrceucticr -- %

CORMELL LYEUCTLRLE

Srecificaticrs ct gil tre prcgrans irnitially cesigrec fcr

4
&
o
o
wn
i
C
ct
o

"rertable" CLEALS. lote, the CLPARS-V rertect subcset

ct tine (LPALS-V LLNL.

1.4 CLFAKRS TRaLZFCRTATICH CCWLEILDERAT. LS

Ideally, the best way to transpcrt (LPAKS t¢ & new crpereting
system 1is tc have two kncwledgeable pecple; c¢ne who "krncws" CLrFARS
irsice cut and cone who "kncws" the hcest cperating systemn
irput/output (I1/C) facilities 1inside cut. As 1s usuel whern
transpcrting &application scftware, the 1I/0 sections must be
rewritten to &ccomccate the new operating system, C(ther system
depencent ccnsicerations must zlsc Te teken Inte accceLrt. Fer
instance, how are character strings representec in the lccel
FCRTRAL compiler? 1Is tne length of the character stirirg ceterminec
by counting the number ¢f charazcters urntil en enc-cf-string symtcl
is enccuntered, or is there & porticn ¢cf tre string reserveu *tc
store the length attribute? Are the strings directly zccesitle tc
a prcgram, or is there an indirect reference tc the string through
a string cescriptor? Coes the host orerzting system allcw
"spawnhing" cr invecation of cre program thrcucn encther [pregram
(CLPARS may wuse spawning tor a "cleen" user interfece)? will tie
Erograms neecd to be "overlayed" &and how easy will 1t te tec cverley
the prcgrams? (rnentrivial problem tecause rerrogramming cf entire

command structure mzy be necessary).

ntreccucticn -- 1
CLEARS TEaLSFCRTATIOL CLLEITLLERTICHC

In "porteble" CLFAWS we have 1scletec the /. 1rnto [echegcs.
Cection { ci this menuel explains irn freet cetall wret tine results

ral anc text file I/C paciege stcoculc lcCw like.

[N

ot the term
fecticr - explairs the s&sbstract ccncept ci CLIRES "blceow" 1/C

puockage (FCET,FFLT) and Level I routines.

System dererdent features ct the portable C(LFaRE desigrn zre
Fcinted cut in many of the sections where they occur. 4 summery of
the system depencent functions 1is given in Cfecticn €. The
arpendiccs contzin a discussion ¢f the cesigns of how tliese systen
dependent asrects will operate on the PLF=-11/7C wunder ELX-11M
version 2.c. The CLPARS V Finesl heport (cf lLovember 15, 167¢)
gives an overview of the filing structure used with the cetails
spelled cut in sections 4 and 5 cf this meznual. An &ppendix in the

CLFARS VI Software Reference lranual ccocntains a list c¢f names cf ell

the system dependent prcgrams.

—3
m
f
>
m
(@]
-
-1
[2]
-
r

ILTRCLUCTICH

[\}]
.
-~

The gcels of an executive for the pcrtable FChTHAL versicn of
CLPARS 2re to ease the user's access toc the (LPARS routines, anu to
be simple enough to provide a2 maximum amcunt of pertebilicy. The
latter gcal 1is important since the executive &nd eny accompanying
overlay structure will be system dependcent. Ir light cof these
gcals, we heve designed each user command t{c te & separete prcgranm
anc have written a smsll executive ¢grogram tc te &an interfece

tetween the CLPARE user and the local "orerasting" system.

2.1 A CCMMALLC INPUT PRCCESSCR (CIF)

To install CLPAES on mcst computer operzting systems, & short
executive called & Commend Input frccessecr, or CIP for short, is
written. The CIF, normally, 1is =& system ceperndent executive
prograri whose mein jobs woula be to sccefpt user ccmmends é&nd

parameters, adc any system jargcr (e.g., RLN, paths tc zn (CLPARS

directory), place any necessary parameters in & file, an ther sgewn
(invoke or activate) the orograms regueste.. Fecr ESX-11M v3.Z, the
spawning capability has been 1left out cf the CIF beczuse it is

handled very nicely by the system ccmmand file prccesscr.

~1

“he Executive -- ¢
4 LCHRALL IKFLY PRCCELECH (CIF)

ty usirg & CIF, CLFARZ "lcoks" the same on cifferent cpereting
systems, 1he wuser Goes not nave tc add QLI stetements, cirectery
informaetion, etc., tc his/her ccmmend lirne. Letzils :cbcut the

Commard Input Frocesscr, under the LSX-11h versicn :

system, cen be found in Appendix 4 of tris menuzl.

"

' SECTICH 2

| FILE MALACEMELT

e o

.0 INLTrCLUCTICU

-

As we have seen in Section 2, CLPAES is considered as & set of

SNIPNTPU

individual progrems, each of which performs a particulsr pzttern
recognition zlgerithm or an ancillery dats menipuletiorn functior
wnichk supports the user and/or CLPARS &s & system. Lzch cf these
programs corresponds to an CLPARS "command." The CLPARS user calls P
fcr the execution of these commands in a sequence which (s)he ceems
mcst appropriste tor reaching a soluticn of & perticular pattern ,F
recognition problem. In CLPARS, files c¢f information pley 2 mejcr .
role in tre system in several important ways: storing the besic

input data; storing system information; storing cdecisicnrn Icgic

and logic evaluation results; and storing intermediate informaticn

- results of one commend which are usec¢ as inputs to subsequent

cecmmancs.

As a result cf using the approach cescrited in this section,

it will te possitle for each program celled by a user tc be truly
portatle. All file hendling will be &accomplished by & limitec .

numter of subroutires, &nd only these will hLave tc be rewritten

when implementation 1is required chn enother meéchine/system.

Furthermore, when writirg the user-calleble prcgrams, it will not

be necessary to know the <details of the file fcocrmets - the

S

Flle [snagenent =- 3
ILTheLle1Ict

rrepremmer need only knew wheut irfermation is steored in the files

wn

arc utilize o set of machine-independent subrcutines which zcces
this irnfeormetion. Lesides simplifying the pertebility prebllens,
this, cf cocurse, mekes implementaticn c¢f new algeritims &n eacsier

taSk.,

nadcitioral benefits c¢f this &spprcach include mininizirng
physical record reads and writes, and an enccding scheme fcor naming
files which eliminates the need for a prcgram tc do repetiticus

cheracter strirg manipulation.

3.1 LEFINITICHKS

The fcllowing definitions apply to any CLPARS user file.

The basic unit of a file is an "element." Each elenent in =&
file 1is sequentially numbered starting with 1 (cne). An element
czn store & character, an integer, or a real numter; the fermat c¢f
our element is the particular machire's floating pcirt formsast.
This definition eliminates problems of varying word sizes on
different computers c¢r the methed of packing characters, Scnme
spece will be wasted by stcring 2z single character as & floating
point word, but since the great majerity of information stcred in
CLPARS files is in the form of real numbers, the smazll inefficiency
cf =storage wutilizstion 1s more than cff-set by the universality

which results.

1C

= oo e e ereeemsarase _
r .

A flle has & "hezder porticn" which corsists cf 'n' elerents

{wiiecre 'n' ccirld te zero), which ceontzir intormetion zbout the file

&S a whole - e.,g., the numter c¢f entries 1in the (file, c¢r

Cinensicnality cf feature vectors ccntained in a file.

ihe remezirning porticn of the file (fcllcwirg the hezder)
consists c¢f "logicel wentries", c¢r "entries" fcr short. Eech 4

lcgical entry contains 'k' elements ('k' is the seme for each entry

of & file; 'k', cof ccurse, can be aifferent for different files).

Entries are numbered secquentially startirg szt 1. It mey e

i
H
.
'

necessary to 1limit the maximum number of entries in z file to the

largest positive integer of the machine's integer wcrd fcrmat.

Twe types of permenent files exist for an CLPARS user; these
types are referred to as "fixed" and "veariable." Fixed files zre
randcm access files that must exist in ezch wuser's cdirectory anc

centain informetion on the status of that user's CLPARES files.

}
|

; There is & cetermined number of fixed files with fixed (cr known)

| names. JSome exemples cf fixed files are:

? Ch Communications File
r TL Tree List File
LL Logic List File
LI Lisplay Information File

Variable files are glso randcm access. The numbter anc nsames

of variable files in existence for a user is variatbtle (cr unkncwn).

11

fxemples c¢f verisble files might te:

TI + THEEA Tree Intormaticn file tor late TEHEEA
1V + TREEA Tree Vectcer file for cdeta 1lEEA

Ti + TREEXYZ Tree Infcrmeaticn file for cdzta TREEYXYZ
TV + TREEXYZ Tree Vector file for deste THEEXYZ

LI + FIRSITRY Logic infermetion file fcr & logic

celled FIRSTIRY

The plus symbol (+) denotes = sense of ccncatenaticr. This is
necessary to allow for the meny deta trees and lcgics that 2 user

mey have in his/her cirectory.

Tempcrary randcm access files can be «created by the C(LPARS
arplication pregrams for specific purposes. In a&additiorn,
sequentizl files zre used in the process of creating printer output

cf dete.

€ !crugerment -- >
WOUTILES sl LEACGEL

icn arno

(a1

Trhere 1s & basic set cf system dependent file meripule
accessing rcutines withirn CLPARS. The maripuletion rcutires cre
called CCFEL, CCREAT(E), CCLCSE, CLELET(E), CKELAN(E), &and CLOVE.

Thiese routines perform the fecllowing functions:

CCFLEL Cpen an existing "system" file
CChEAT Crezte anc cpen a rew "system" file
CCLCSE Close an opened "system" file
CLELET FLelete or remcve a "system" file
ORENAM Give & new name to & "system" file
CiiCVE Move one "system" file tc another

(rename a "system" file to ancther existing

"system" file)

The btasic file accessing routines are czlled FGET &nd FFUT.
These two routines contrcl the actual movement of data between the

computer memcry and the CLPARS verisble anc fixed files.

All the &above menticned file manipulstion zand =zccessing
rcutines (written in FCRTRAK) &zre at the 1lowest level in thre
hierarchy of CLPARS file system routines. Therefore, these

routines will be referred to as level I routines.

rile rencgerent -- 3
P2l SYOSTEM RCUTINES ALL LEACE

al & step actcve the system cepencent tile routines will te =
s5et ¢t routires that the C(LFARY cpplicaticn prograems use e irveke
the mcre primitive level I routines. These programs will bte kncown
s level II routines. The level II rcutirnes heve the gquelity cof
being "systerm inceperndent." A few exemples c¢f some <cf these

rcutines are as follcws:

CPEKTR Cpens &en CLPARS date or lcgic tree
(manipulaticn routine)

CREATR Creates an CLPAERES dztz or logic tree
(menipulation routine)

CEFENFX Cpens an CLFARS fixed file
(manipulztion routine)

TIGCAF Gets the counts and pcinters frcm z node
entry in the tree informetion file

(access routine)

llote that the level II file menipulation routines may wuse
level II file =zccessing routines. CFEKNKTR is still ccernsidered a
level II file meanipulaticn routine becsuse it uses COPElL to perform
the actual system file open. That is, CPERTR is & level II routire
because it's a step above 1its ccrresponding file menipuletion

routire, CCFEl, which is & level I routine.

14

[T

VSN

ct
:

(¢4

tcllowing peragrapt:s give caditicrel c¢luractericstics ot

b

ne

(9]

Zome Level 11 file zccessing rcutines mey reve
been cesigned to perform formet ccnversicns when
desired by the epplications gregrem. Fcr exanple,
if an applicaticns pregram requests the number cf

rncces in & deta tree to be returned intc zrn integer

variable 1., then the level II rrogrem it cells will
retrieve the numter c¢f ncdes from the proper tree
infcrmaticn file. Since all dete is stored &s
"rezl," the level Il progrem must convert the

number of ncdes to an "integer" and plece it ir .

Lpplications programs neeac not "know" the format

of files; i.e., they do nct neec tc knew which

element of & logicel entry contzins & particulear

item of data. They do need tc knocw the name and

celling sequence of the level II file access .
routine. The reason for this is thet the level II

file accessing routines "know™" the formet of the

CLPARS files. The epplicetion program need only

"know" the nzme and the czlling seqguence c¢f the

level II file accessing routine.

CEg 3

gicel entry,

O
™
b

I necre clemerts are aacdec to

r

s

SS

O
[a1]

crevicusiy cdesigred level 11 file,cc

o

rcutines mey rot reqguire nccéificeticrn (i.e., it

trhe adcitions zre mecue &t the ¢nd cf the lcgical

a
'
[$]
Q1
b
m

entry, &S oppcsed to being insertec in ut
¢t the lcgiczl entry).
¢ All files utilized with this system will heve the

€

[

same length physical recorcd. Level II fi
accessing routines are unzware of this lengtn,
baximizing this length imprcves efficiency by
minimizing actual file zccesses; m_onimizing this
length leeves more ccnmputer memeory space fcr
appliceticns progreams. hysical reccrd length is
¢ machine-depencent velue. (See Appendix F for
cdetailed CLPARS I/C notes ¢n the RSX-11M cperating

system.)

Lefcre giving a more cetailed cescription of the (file systern
rcutines, two tables, which &re used by these rcutines, rust te

cdescrited.

The first tesble, called the File Ccde Table (FC1), is used to
relete a numbter tc 2z file rame known to the particuler cperatirng
system. Thus, the portable CLPARS system will be zble tc refer tc

cll files ir =z simple, mechine/system-indegencent numeric ccce

1€

ftile cecce (cr
serves w5 thne¢
which 1s requirec

crerctirng system.

~Al1 fixed files, whiich are
thhe follcwing FCLs:
CM = 1 FV = €
L = 2 S1 =7
LL = 3 SV = ¢
LI = 4 SM = ¢
LV = ¢ ns = 1C

For variable files,

¢cta tree there is

ecch user logic tree
Tnese entries contain the
rerreserting
verisble

files.

The File Code Table is system dependent znd accessed

by the 1level I

fcrmet of the FCT s&s

system.

cescritec in

ancther scheme 1is
zn entry in the Tree List (TL) file,

there is an entry in the Lcgic List (LL)

the deta or lcgic tree.

files are nct preceterminred like the file ccdes

manipulietion rcutines only.

it will apresar

c1le lereferernt --
CORILTINEE

T v .
e PR W

[
n
ct
M

3
n
m
[¢]
fad
-
o

A
[&)
—

usedg. Fcr eacth

‘er

ar.c

file.

tree name &and FCLs fcr the twe files,

hote, the Tfile <ccdes fcr

fer fixed

directly
Appendix L gives the
under the LEEX-11. <crerating

File tareserent -~
FILZ SYOTer BCUTILES 43l LTACE

e scconc table usec bty the file rcutires is tre File krcceass
zra Corntrecl Tzble (FACT). This table serves severel purgpcces, ell

generelly related tc the set o¢of files which <ere "crper" cr

-

r.e entry

o
(]
(8]
M
7]
n
b
o
=
1
ct
O

an CLFARE frecgrem auring its executicn,

pae

ndex tc this table is 2z File lescripter nurmber, cr FIL. 4Arn entry

'

n FACT centzins the "systen" file neme, the "lcgicel urit rumber”

2o

assigrec tc tre file (LUN), space for s physicel reccrc (PLELFF;,
tre recorc rumter of the physical reccrc currently in the tuffer
(CPREL), the number cf elements in the file heeder (ilE), tihe nunmter
of elements in & iogical entry of the flle (LEut;, anc a "put" flezg
(PF) which incicates thet & change nas beern mzce ty & "file put"
functicn in scme portic of the current ghysical reccrd. (See
Figure 3-1) The FACT table is incorpcrated into a commen zrez that

-

is availeble to all level I routires.

3.2.1 Level I Manipulzticn Routines -

CCPEL locates the first empty entry in the File 4ccess arcd
Contrcl Teble (FACT) and sets a file descriptor (rILC) to pocint tc
that entry. [he file code (FCL) for veariable files is cttaired
frcm the tree or logic list files before calling CCFEL. The Leader
size (HNE, header number cf elements) and leogical entry size (LELE,

lcgical entry number of elements) cf the file must te givern sc they

C,.

ril

- S G L e e TE W e R YR G R ST D e D s L S W YR W MR TS TGP S @v S W e R A e we W e

[}
Lkl §id
== V=
- .o
i
')
e)22)
[N VA |
e b i
(SR IR Ty |
!]
] ¢
v 1w
g2l
Ky BRG]
[SO BN SO |
[\ I TR |
—~ b~
BRI |
(ST B |
[} !
[}]
PN BB |
[T el I |
OB [QN B |
[} [}
— d -

filerame

1
}

LUL

and Ccntrol Table (FACT)

File fLccess

]

2
-

Figure

CRegenent —=- 3
YLTEN RCUTINES sl USACE

.
K
<
-~

o
[}
—
e

cer te entered intc the FACT. Tihe "put fleog"™ (FF) otnd the runter
cf the <current physicel record (CFRL) entries cf the FACT will te
set to zero. CCFEL cbtains & "system" file rzme frcerm the File Ccde
Teble (FCT), vie the FCL, anc cpens & "system" file. The lcgical

unit number entry within trhe FACT is zlso set ty CCFEL.

CCREAT(E) creates & new "system" file for CLF&sl grogram use.
CCREAT 1is given the nzme of the file to create zlong with the
"type" cf the file. The "type" incdiceztes that the file is c¢cne «cf

the fcllowing:

1. tree infecrmetion file

z. tree vectcer file

3. logic information file
L, logic value file

5. fixed file

A1l the zbcve types have entries placed in the File Code 1lzble
(FCT). The entry in the FCT is a "system"™ file name, creazted using
the "LAME" and "TYPE" arguments cf CChEAT. The file <cocce of the
created file 1is returned to the cslling program. CCREAT fills in

the FACT entries and returns a FACT pointer just like CCFEN.

CCLCSE first cirecks the "put" fleg entry in the FACT (fer tre
given FIL) to decide whether it needs to write out the current
buftfered record. It then frees the portion of the FACT, pointed to

by the given file descriptor, and performs & "system" file close.

—

£l remcves &n existing "system" f{file frem the computer

(=

~
¥

N
-

rating system's file structure. It elsc remcves an entry in the

O
I

;)
rile Coce Teble pcinted to by the given file ccde argunent, it the

celeted file 1is & variable file.

ChElIAM changes the nane of the "system" file name withir the
&

File Ccie Table poirnted to by & given tile ccde.

CMCVE mcves the "system" file, pointed to by cne file ccce, tc
the "system" file, pointed tc bty ¬her <{ile code. This
essentially is & "systemn" renaming functicn, bLut dcrne in =&
different menner than CRENAM. (CRENAMN is used when the new name of
the file being renamed is not alrezdy in the FCT file. Tc insure
that there are no duplicate file names, CRENAM must check the
entire FCT file.) The file pointed to by the second file «coce :s

eliminated from the "system."

General lLotes: The contents of & file cannot be a&accessed
unless it 1is oren at the tine of access (the meximum number c¢f
files which can be opened simultzneously is limited by the numter
¢f entries 1in the FACT and any particular system limitaticns). A
file should not be deleted if it is cpen. File deleticn does nct
remeve an entry from the TL or LL file; that is the epplicaticn
prcgram's responsibility. 1In renaming files, the old file should
be closed tbefore it is renamed; the new file is nct opered by

CREKNAM.

21

€ benggement == =
EooysTes ECUTILES ALD LEACE
scec Level 1 File :.ccess loutires -

Cre ¢f the features cf FGET and FFUT is the wmininizazticn c!

actuel physicgl recor¢ &ccesses, A descripticrn o¢f trne FCE

prccedure fcllews.

FCET uses a file descriptor (FIL) to determine whici. FACT
entry descrites the {file to bYte accessed, Frem the procedural
srguments specifying the logicsl entry of the file &nd the first
element within that entry, plus informzticn in the FACT entry
(number of elements in header and number of elements in leogical
entry), it 1s possible for FCET to compute the “zbsolute" elemert
address in the file of the first element to be retrieved, ULividirng
this address bty the number of elements per physicel recorc
(constant for all files) will give the physicsl reccrd runter
containing the first element. Comparing the required physicel
record numkter to the physical reccrd number currently contained 1in
the memory resident buffer cetermines if the element requested is
already in memcry; if it is, the element is returned to the
callirg program; if it is not, @ new physicel record must te reacd
into thke t .ffer. towever, befcre reading the new physicel reccra, .}

a2 check of the "put flag" determines if any elements cf the current d

physical recoerd werea changed by & write (FPUT) cperaticn. If so,
the memory buffer 1is written to the file before the new physical

record is read into the buffer.

n)
[ZM]

dd

SFUT werks in 3 similer manner. FPUT computes the Mebscliute"
element zdcress, the physical record number and the "relztive"
accress in the physiczl reccrd numbter o¢f the first elerent tc

write. The ccmputaticns are the seme as those dorne in ICLET,.

T

If the required physicel record numkter 1s not 1ir the FACT
Piysiczl record tuffer (memcry resident), trhe “"put fleg" is checked
tc see if it is nrecessary to write cut the current physicel reccrc
tutfer befcre reading in the required recorc. If the "put fleg" is
set, the menory buffer 1is written to the file. The required
phiysical recora 1is then read 1intc the memory tuffer. If an
end-cf-file cccurs, it is assumed thet the file was opened fcr
crezte, &earnd the memory buffer is zerced out. Ary cther type of
rezd error causes FFUT to exit. If the requirec physicel record

rumter is memory resident, rno read 1is necesszary.

The elements tc be written toc the file &ere transferred from
the calling routire buffer to the FACT physical reccord buffer. The
"put fleg" is set to indicate that elements nave been changed. If
there are more elements to be written (elements to be cherged cross
block toundaries), the current physical recoerd buffer is writter tc
the file &and the next required record is read intc tne memcry

-y

puffer. The process continues until all elements have teern

chenged.

le lenegerent =- 3
£ SYSTEN RCUTILES oKL USACE

> Level 1I houtines -

Since there nhas beern & large rumter of level II rcutines
developed tc meet the needs of tre C(LPARS applicztions pregremmer,
it is impcssible to provide rcutine names ard [peraneters in this
document (see CLFARS V-VI Software Feference lhanuels). licwever,

severai realistic exeamples are shown.

A routine naming conventicn is used, because of the number of
routines possible. Those level II rcutines that read frcm or write
irnto & file have names of five or six cheracters cf the form FFXMM
cr FFXMMM, where FF represents the file name type, X is G fcr get
(resd) ¢cr F for put (write), and kM cr lkkM is & mnemcnic for thre

routire.

For exampie, there cen be a routine which returns, &as &n
integer, the number of entries in the tree list (TL) file. The

cccde for this routine is suggested belcw.

INTEGER FUNCTICHN TLGNCE (FIL)
INTEGER FIL, N
K

FGET (FIC, C, 1, 1, X)
TLCHCE = X

RETLRM

Fer this example, we have assumed that the number cf the entries’

value of the 1L file 1is contained in the first element cf the

R er—
T oy

The velue ct FIL, of ccourse, came from crening the tree

list tile. This exemple illustrates that & .evel 11 rcutine cen

ct.znge thie real formeat used for 2all file elemernts.,

AS ancther example, we need & routine tc retrieve the imear

vectcr ifcr a desta set, given that we know the lcgiczl entry (LL)

fer this cdete set in the TI file.

SUBRCUTINE TIGML (FID, LE, LLIM, AEUF)
INTECER FIC, FGET
l. = FGET (FIC, LE, 17, MLLIM, AEUF)

RETURM

ct
lax
(4]

In this example, we have assumed that tne mezn vecter starts

17th element of a Tl file entry.

cs

QiR .y, L

“‘''''"""""""""""".'!!!Ill!!!""""""!!"!''1!!n||l-u--||n-.-.-..............._...._..,,,,,,,,l,1

SECTICH &

FCRTALLE CLFARS FILILG STRUCTLRE

4.C ILKTRCLUCTICH

Ezch CLFARS user will have the fcllowing files in his/hter

user's directory:

Cemmunicaticns (Cr>

Tree Information (TI)

Tree Vector (TV) i
Tree List (TL) i)
Legic Informetion (LI) ‘
Logic Value (LV) ri
Lecgic List (LL)

Saved Vector (S¥)

Saved 1Iransformation

Matrix (SM)

Display Information (CI)

Tisplay Value (CV) "
Projection Vector (PV) f

Scratch 1 (S1)

History (ES) |

The contents of the first nine files are descrited in detail i

in this =secticn, The display files are discussed in Secticn 5.

The history file is cdescribed in Appencdix E, wuncer the CLPARS

irstrusentaticn gacrage.,

4,1 THE CCLMUNICATICLE (CY)

)

ILE

Th.e C!. file contains basic (LFAF systerm inforretion that will
be zccessed by almest all ¢f the CLPARS commenc crcgrams. Zirce 1o
certains ne "cata", it cnly has & header. This hescer ls picturea

in Figure 4-1. The following paregraphs exgpléein the corncepts cof

current deta set, current logic and current mejcr (LFALRS cpricrn.

e current deta set is the treename, nodeneme peir thet the
user werks with. It consists of &ll the vectors and structure
e

undernesth that particular node. It is assigned using the ESETLC

cermené, which prempts for the name c¢f & cete set.

The current logic is the lcgic the user is In the prccess cf

ct
0
™m
ct
m

designing on the current data set, cr using to evealuste & tes

the

9]

wm

set. In the pcrtable FCRTRAN version of CLPFARS, we allcw mer
one logic file per dats set. Tc dc this, the user will te fcrced
tc assign unigue names to all lcgic files. To begin & new Icgic
tre ccmmand NAMELCG is used; to restcre cn cold lcgic the ccecrmeand

CETLCC is used.

The user will be able tc store several 1logics for the same
date set. They mey be ccmplete or incemplete lcgies. If they are
irnccemplete, they mzy be restored &s the current 1lcgic and
ccr.pleted. hwhen z logic is beirng cdesigned cr evelustec, its cesign

set cr test set nmust be the current detes set.

-~

Ny

[

rorteble (LFabe Filin, ltructure -- &
1k COPMULLICRTIONLL (M) FILE

Element
1=-¢ ' Current Treenezine '
t 1
| T e e 1
G : Tree Inforuneticn File FCL '
R e L LT P P S e e i
Current iC i Tree Vector File FCL '
Late e R attatater .
Set 11-14 : Current lLode lame :
info. g g i s g !
15 : Entry Table Slot lLwunber ;
' of Current lcde i
[} {
[Badadadediadieth bt idndatindsthadhediniesiaden e [}
1€ ' NEIM '
[] 1
---------------- [ettt ettt d el |
17-24 : Current Logic lanme i
Current T L T L L T H
Logic c5 ? Legic Information File FCL ;
info. L !
26 ' Logic Value File FCL i
]]
[Eadndeshadiesh o ntadhadadhadhadbadhndatinsingibasieniesiesfioaibenfedianinainatbendanibe et I
27 i liumber cf Inccmplete Lcgic lLodes |
[} t N
---------------- [Bttt ettt i b adniesiadh bt bt | “
el i cmpty (erea fcr future use) ']
] 1
| Bttt et b o {
2C-Uu7 ‘ Screen Coordinate Informetion H
]]
| ittt ettt ittt (
48 ! Prempt flag (C = short prompt) | 1
/ (1 = lcng ©prompt) |
]]
[Bkttt bt td b eednde et |
Le i Cne-speace Ein Factor (defsult = &) |
] t
[Batetetadieth ittt g t
5C i Two-space Cutcff Value i
) (cefeult = £0C) g
R ittt LD DL L LD L L L L LD DD DL D e D et i .
51 ' Instrumentation flag '
] i
Bttt e indeadiadbdhdedhnten e et |
. 5¢) Instrumentation Threshold i
[} 1
Bttt eeeead et ettt [}
3 | Current CLFAKS Cption # ... ?
t]
[Baiihatiashedhsi et fndedadadad ettt ettt i
S4-€3 : ... and Cption lLame '
1 i
[ttt o et et |
‘ 6L4-CT g CLPARS directory path string '
é

daa s SO

Figure 4-1 The Communicztions File lLeaaer

Fortetle CLEALY Flling liriLciure -- -
THD CLrlaICaT el (Ch) FILL
“he current rajer CLPARS cption is the lest rejer CLEALC

cenmang thot wes useu. 1t is "rereombtered" so tist & coerrect set cf
sutseqlernt cptlcns mey be cispieyec te tile user. The ceterninaticn

cf the set cf mejer CLPARZ cptions end their cgticr riumters cean te

fcure in the CFTICH test file (see fLpprendix E).

)

| Fcr an explanaticn cf the prompt fleg in element 4 ¢f the Cl
; file, see Section T7.&.- of the CLPARS V Final fepcrt. The rumters
stcred in elements 4C and 5C relate tc CLFAES displeys. The use cf
the <cre-spece bin factor is Cdescrited in fecticn 5.2, The twc
space cutoff value cetermines whether 2 cluster plot or & scatter
pleot 1s precducecd ¢n @ twe space display. If the number cf vecters
ir the dets set is less than the cutoff velue, & scatter plct will
te prccduced; otherwise, & cluster ©pilot wiil be prcduced. The

cefault cutoff velue 1s £CC. The instrumentation flzg is used tc

enable &and cispley thie CLPARS instrumentation package. The prompt
fleg, bin facter, cutoff velue, and instrumentation f{lag may te
sltered bty using the command CLEFAULT.

L,z THE TREE INFCRKATICN (TI) FILE(S)

The Tree Information file ccntains &all nrecessary structural

|l

informaticn about a dasta tree cs well &as tiie mean vecter ard
ccveriance matrix feor each ncce cf the tree. The 1TI file «consists
cf & fixed-lerngth header porticn ¢ncd a fixed-length entry fcr eacth

rode ir the tree (see Figure 4-2).

Forteble CLEFADZ Filing Ltructure -- &
Phn ek ILFCRFATICL (TI) Filed(i)
Element
; Lunber of ncces in tree
z Limersion (LLIM)
2 lext zveilable ncae pesition
y llext open entry &t erna of file
5 Senilor node pointer 5
_____ S S ‘
€ Entry Lumter cr ¢ !
7 cntry lLumter ¢cr C .
. 1

Entry Table

Mex+5 Entry humber cr C

- . - - gy - - - - - - S G G e e D e e SR we R e WY e A -

(Max = 1C0C)

Figure -z The Tree Informsticn File lLeader

La)
O

h Tig gErnicr rncce (1n elenmert 1), tre cimensicn ¢f trne vectcrs {ir
ererment o), the pcsition ir the TI file c¢i tie rext &aviileble

N

- order tcC discuss tie pcinter irn elemert cf the hezcer, we
isust first expiein the entry table and the mearning cf erny pcirter 4
irn the 71 file. Wwhen & nccde is pléaced in the TI file (initizlly,
¢cr oy some¢ tree menipuletion routine), it is icdentifiec with & slict i
irn trhe entry table. 7Thils slot ccntains the &actusl entry. numter
trhat the node resides et within the Tl file. 4Any pcinter to z noce

N

will pcint to tre slct ir the entry tetle with whickh 1t s X *

iderntified zrna nct tc the zctuzl entry in the tile. The sict with
whnich & rcce is identified will nct change, unless, of ccurse, thre
roce is dceleted, 1in wnichk cgse the corresponcing slct will te

ZETroed.

The key feature of <this scheme 1is thet all fpointers
ircerendent c¢f the =actual entry positicr of the ncdes in th
file., loces cean be trthysically moved within the TI file
pointers residing within the ncde co not have to te charnged.
cnly change necessary 1is s chreznge to the slot content in the entry
teble with which the ncdes zre identified. The zcéditicn c¢f

entry table to the TI file header nas grestly simplified rmany

the tree meripuleaticn routines.

1€ sernicr nccde peinter irn elemernt 5 ¢f tre lLecder thern Lcints
tc tune sio0t in the entry tatle thet is identifiec with the senicr
rcce. 1he senicr ncée is wccessec bty first coteaining its erntry
position frem that sict. "he entry table fclicws., It conteins
slcts fer 1CC nodes, which is the maximum numter ¢f ncages thet =&

"

ceta tree may possess in pcrtable CLPAES.

for each node in the tree, there will be ar entry irn the 11
file (see Figure 4-3). The learge set of pcinters is cdesigrec¢ tc
facilitate mcvement through the tree and, in perticuler, tc enctle
progrems to heve easy access tc the set of lowest ncdes. The
structure is ccmpletely general; &any ncde c¢f the tree can be

ccnsidered as the senior rnode of 2 ccmplete tree. 4 diagram of the

m

pcinters contained in elements 9 thrcugh 12 cof the TI file entries
is exhibited in Figure 4-4 (remember that pointers sctuzlly point

tc slots in the entry table).

The vector pcinter in element 15 is the entry number c¢f the
first vector in the 1list of vectors (within the TV file)
corresponding to a given lcwest nocde, If the node is not z lowest
rcde, this rpointer 1is (. For debugging znd maintenance reasons,
each ncde points (in element 16) bzck to the slct in the entry

table with which it is identified.

¢ CLFabLL Flling ltructure == 4

i
BEEOILFORRATICNL (TD) FILL(S)

tlemernt Attreviaticn lurtier
----------------------- leccripticon
T4 : LOLE Ladt H
1 1
[adhadhadieidiadeathadbadeadiadb el diaatadhesieied i !
5 ' i cf vecters at rncce | LCVLCE
L i :
C € I # ¢t lcwest ncdes v LLLCLE
L ! Leneath tnis roce X C 1t lcwest rcce
»] !
1) t |
" i v # cf chilcdren v LEILC C it lcwest ncce
<]]
bad }]
¢ ! rncce level S 1=level ci senicr
R ' ncce
1 N .
! \
g i Ferent Fointer i PP ¢ 1f scricr ncce
]]
1 i
1C i £ibling Fcinter i SF roints tc rext
| H sibling; C it rcre
! |
i] .
P 11 i First Chilcd ' FCF C 1f lcwest r.cce ¢
C i pointer (:
I) i
L 1¢ i First lcwest node v FLILF C 1t lcwest ncce .
T | pointer ' ,
E i : :
K 153 ! Lowest node link i LILF Cif rnct ¢ Towest i
S v pointer ' rcce, -1 1f Lest
i ' lowest rcce
']
]]
14 i Lowest node back i LLEF C if rct & lcwest !
i pcinter H ncce, -1 ii 1:rsz
4 ! lcwest ricce
] 1
i [}
15 i Vector Pcinter in TV | VP C it rot & ilcwest
| noce ' rncce
1 1
[Bl ittt e i il dad e 1
1¢ i Eazck Fointer to :
} Entry Tatle i EFET Fcints to the sict
D - irn the entry tulie
! ! with whicl. thre
i LEALS : noce is identifiec
i)
TE4+NLIMN jececcncccccaea- R
] i (ENL = 1¢<+LLlIN «
]]
\]
v CCVAKIALCES i WO IM(NDIN+Y)
: : e ————-
ELLD cmccmccccn s — e ———- 2)

Fijure L= The Tree Informeticr File trtry

(I3}
La)

Pertetle CLEARS Filing Ct
The TILL JLECEMATICL

HEALER
:
!
1 ‘ 1
[Senicr lioce !!
1 1y
__________ T L
---------- 1S322, 22522222
E f P F P
F f P F F
F f P P F
F f F P F
F f P F r
Foz==}===2== =z=z=z=z==z =zz=z=z====z
F ! !Issssss-! !ssssssss-! !
F ! lode ! ! lode ! ! Lkecce !
F ! ! ! ! ! !
F == |===l== =lzz==z|=== === |==c=|=
F F £ F P lbt b1l F¢ P P
3 F fF P l1b bl F £ F P
F F f F F 1 b b1l F £ F P
r F{F P 1 b bl F £ F P
=l=zl=)==2=2 ===z=== l1b bl F o=iz=z=== s=c==z==
! !sss-! ! 1t bl F o1 !1sssss-!
! llode 1111-! Lode !1111111 b b1 F ! lLode ! ! Lode
! f-tbb! t-bbbbbbtb b 1 F ! ! !
=====z==== zzz===xz b1 F ===z} }= z===}==
b1 F F £ PP 1b
b1l F F £ F F 1t
b1l F F £ P P 16D
b1 FFfP P 1t
bl =)=)=l=== z====z==z= 1 Lt
b1 !ssss-! T1l¢t
b 1-! lode 11111-f lode 11 b
bbbb! t-tbbb! t-tbb

- = - = - -
sS=s==Ss=== =======

parent pointer

sibling pointer

first child pointer

first lowest node pointer
lowest node link pointer

lowest node back pointer

o mry o
w i hn it

(the - or | symbol used et the end of & pointer neans that the
peinter is pointing to the node the - or | is tcuching)

Figure 4-4 Pointers in the TI file enctries

Ty

e« C e |

eble LLFakY Fillrg liructure -- &
Thh Trel TLFCTCATICH (TZ) FILLIZ)

accitiornesl Ceonsidereticns =
The rame cf each rnode must bte distinctl ancé cersist ¢f crne te
four cherscters (tlank padcing will cccur fcr Msocrit®

nemes). The first character ¢f the rname will Lte tihe cre
displeyed on one-space oOr twc-space displeays. There wre &f
displeyeble characters in the 1¢77 FCRTEAL standard. Since
only lowest ncdes &sre used in such displeys, & maximum ¢f LS
lowest ncdes will be sllowed ('?' 1is wused for prompting
purgcses). An intermedizte ncde can begin with the sarme
character as znother intermediate ¢r lowest ncde, but two
lcwest ncdes must begin with distinct charecters. Tre
limitezticn on lowest noces implies g meximum cf
approximetely ©¢€0 nocdes 1in an CLFARS dzte tree. These

limitations can be eesed (cr further restricted) by changing

the program (UNICHL).

L)
1 94]

teole CLEARE FIL
PRIk ZLECRMATICH

PR

swcre the entry table within
innediete zccess tc the entry

tree.

Eefcre ncdes ere entered into
entry teble is zeroed out so

exists in it.

when a node is deleted, or when severzl ncdes

intc
these cases,

the file or to lezve the

element

entry and

The last free entry area will always cccur

filled entry, and 1is

header.

)
(o)

hcutines thst perfeorr menipulsticn with &

it is up tc the individuel prcgram tc

rcinted

cete trec usuelly

s tc

o

¢ progran array, SO

es ir

O
o

positicn c¢f 2li n

a newly createc TI file, the

thet no extranecus intormeticn

are ccirtirned

one ncde, erntry speces may be left in tke TI file. 1In

CCmEress

spaces. In the letter case,

2 of the TI file header will point to the first frec

the rest of the free entry areas will bte linkec.

after the last

to by element 4 of the TI

For a more complete discussion, see Secticn 4,73,

[P

215 Filine Structure -- &
ILFCRMATICNL (T21) FILL(L)Y

€. Ctcrege cf the Covariance lbatrix:

et C be the coverience meaetrix for & cless cf vecticrs X

o
(@]

cf cimension 1 with elements ((i,3j). Since C is symretri

(i.e¢, C(i,j) = C(j,i) for &ll 'i' znc 'j' from 1 Ltc 'n'),

it is onrnly necessary tc stcre the lower trienguler perticn
> r

cf C. We shall dec this in a cne-dimensionzl errcy, cellec

1

A
4
The crcder in which C is sterec in A is C(1,1), <., i
Clr.,13; c(a,z), veey, Cln,23; CLZ,3), vuey Clny2); o0y 4
C{n-1,n-1), C(r,n=1), C(n,n)., That is, the cclumns of the 4

lower trianguler portion of C are stored orne after the other

in their natural order. The prctlem is tc find =z f{ormula

for a givea C(i,j) that will yield & 'k' such that

€(i,j) = 4&(k)

The address of an element c¢f the 1lest row and Jith

column of an (n x n) matrix is given by

Q(nyj) = jn

70 address z position 'i' in the jth cclumn that s rct
in the 1last row (i < n), we have to subtrzct cff tne

distaace (n-i) wkich gives us

C (i,J) = jr - (n-1)

"l"""""""""l'-l"""'-"lllllll-"'-lIIlllllll-"'""'-l!'l"-"-l!-r—‘

ricble CLPARS Filing Structure -- &
L TELE ILECRMATICL (TI) FILE(E)

rc
—
Tt

flcte, when '1i' equ&als 'n' we et cur first eqgueticn

egein.

how, when we deal witii o¢nly trhe lower triargulear
perticn of & square matrix, we will hzve to subtrect cff a
little mere arez. Again, we start with the fcraoula that
gets us the address cf the lzst row in the jth column of & A

square metrix and modify it sc it looks as focllows

C (i,l) = jn - <Lextra>
where <extra)> means all the zrrey positiors 1in the upper !
triengular region of the matrix, preceding (end including)
the jth column (see Figure L4.5)

<extra> = (j=-1) + (j=2) + ... + 1
The sum of the numbters 1 to S is given by

Sum (S) = S (S+1)/2

Therefore, <extra> (j=1) (3)/2

C (n,3)

jn - j(j=1)/2

-
<
-

o

———

4

Ctructurce
(T1) FILE(S)

[

i3
v

Cclumn

- . e 6l —— rRs
v N s

!] ! !])]
t [} [}]] 1~ 1 1
[]]] } 1 W~ 1 1

O | ')]] I+ 1 g
]] ! L] i <o ¢
] [}]]] t ~— 1]
] ! 1 [} [} | S | 1
| \ [} | [} [}]
I i it i Db et e |
\ [}] 1]]]]
] t [1 [} w]]
i i] !] oo]]
L}]]]] > O «l 1 §
!]])] W - - [}]
]]]] 1 PORS | [} L]
) ! [}]] | SR I O] t
1]] t] Pl /2 IR ¢]
] [}] ¢ [} []))
!] L] I] a,]]
)] 1 {]) l
| e rm ce rr s crt e A e rm e e e em -
] i] ! ! [}]
] } [] 1 (v) [} O]

= t]]) I] [}
1 }] [ISR | [} <]
]] [} iy] =t 1
]]] ' 1 {]
| s mm m e e e e e e e e e rm e e e me
] [} 1]]]]
1] [} [|] (38} 1

oy) 1 [} I+ J []]
] [} [l oA |] < [}
]] [BN I BV |] oY [}
i '] 1]] t
| —— v rm e e e e e re e e e T e rm e v e e |
]]]]]]]
] [BN BV B R | (] -]

SV | t+ 0+ 1 4+ (]]]
] [IS B> B GO |] [~)
] [}] [} | ! o]
] !]] { 1]
| mm o mm e e e e e e e m e mm e ol e
]] 1 1 [1 |

— § = b1y) 1 <)
1] !]] 1 [}
! ?]]])]

a2

- — [§¥} (28] = o

O

=

e, L .

Thhe Positicns ot the Ccveriance datrix

Figure 425

Jj), in the array A

(C(ij), i>

Oy
™)

- e e e

recrtoble (LFARS Filing Ltructure -- L&
ThE TERE INFCOLMATICHL (TI) PILE(L)

Tc address pesiticn 'i' ir the th column cf the icwer

J
trianguler pertion cf this metrix (I >=) that is rct inm
the last row (i < n), we heve to subttrect c¢ff the semc
distance (n-i) &s we dic¢ in the previcus cese. lience, for

(i >= j), the positicn of € (i,j) in array A is
kK = jn = j(j=1)/2 -~ (n=i)

4,2.z liumericel Ekxample -

Consider the following simple cata tree «cealled XEXARFLEZ cf

dimension four.

¢ ¥%¥%¥ (senicr ncde)
]
...... S D
/ ' \
]]]
) ¢]
] []]
] 1]
i H i
o ALlLCLC ¢ ENCE c CiLCC
1]
..... .
/ \
H i
] [}
H [}
' H
o LNCD o ENCD

CICE and ENCLC have been <cresated by structure earelysis
rerformed on ALCC. The contents of the TI file for this exsamgle

are sheoewn in Figure 4-53.

e

R

)

<
~

FILE(

(TI)

6

ELCE

Thek INFCRRATICH
Ll.CL
ENTRY ENTRY

13
ClCL

H

o~

1

Ferteble CLPARS Filing Structure -- 4

ALCL ©EBlLCC

1

ENTRY ENTKY ELTRY ENTRY

* % %%

l.eader

Element

S Gt ‘o
o [e] ocC
) %))
ok Lo [[O T o %Y b=
2 © O v wunwn v v 0. = [on | [a] [£3]
DP O v D4 Ja 00 W O g = owLs oo
-5 2o EX2U0 B+ = o N ko ok > @ 123
30 00 3. ~
= PR el =0 o.
o
<
>
[#3]
et o e e e . e . = o o - S o o —— o — e - ———— T —— o ————— - o = ——— e >
]] [|
Mmoo [} W (&) o~ N O (@) QO M N O Wl =n OO0 >0 | 5.
3 «]] [} (o]
-] [] [} L)
]]]
]]] [}
]] [| —
[T VAN Jydh) wn O (@) N [qV} O (@] o O -— ~— N 2= 1tOO>=0 ! 4
™ [} w [} 1] [F %
=] I]
]]] —
]]] =
]] [}
(SRS NS mn O o — — &) o (&) — ™M WO T IEZWL=V 1O))
~ 1 t- 1) | o
[} 1 [} =
]]]
]]]
[]] [| «Q
a3 2= O ¢ N [&} (&) — — = (@] (@] =r NeJ — M2 | OO0O>0n | ..ﬂa
o~])]
]]] =
]]]
]]]]
]] e | [9
A I | [T V] [QV] Land — o wn n o o (@] N 1ZWag2Z20 1O0O0>0n | 3
t~] []] []
]]] ol
] !] (€5
[}]]
wn 1] (3]
* % kK 8V} s 18] Q Q (&} [qV] un o o o .luv..EANS.CCVS“
N]
' | ' 1
)
[}
— —~ — —~ ~ —~]
Vol N S * 24 [4e) (&) «Q (3] 1 i
~ ~ ~ w0 O O O o o (&) s sO |
— o [sa T~ n O " y
(&) wn
— (J sy Vel Ve t~ [¢6] (o7} (&S] - [9V] (M = Uy W0 o — O o o o ¢
-— Lad — — -— — -] N ™M <
o~ <
- 5

T o S rr ey

Focrteble CLFARS Filing Structure -- &
THE TREE INFCRMATICL (TI) FILE(S)

2 Creatinzg lew Trees Frcm (Cld Tress -

The CLPAES dzts tree entry tchble pleys en imgpcrtant role whern
creating & new cdetea tree frem & portion of an existing cute tree,

its usefulness comes in the form of minimal structurel pecinter

For exeample, the portion of an existing tree (TKEE1) wusecd to
creat a new tree (TREEEZ) contains nodes z-4-5, where Z is definec
tc be the "current data rode" (see Figure 4-6). The slot numters
¢f the nodes that make up the new tree will be identical to their
ccrresponding slot numbers found in the old tree. hkowever, note
that the <contents of the entry table slots (entry numbers) in the
new tree differ from those found in the old tree. The rew slot

ccntents relect the actual position of the ncdes obtained from the

0ld tree.

A few more changes are necesssary to complete the
transformetion of old to new. Each ncde in the new tree requires a
new node level. For those nodes that are 1lowest nodes, a new
vector pointer is needed (i.e. vectors are transferred, tco). The
first lowest node in the new tree must have its lowest node bazack
pointer set to -1 (end link indicator) and the last lowest node
must have its lowest node 1link pointer also set to =1, Tre
"current node" of the old tree is now the senior node of the new
tree, Thus the node's name must be changed to '#*¥*¥' the name of
the senior node in every CLPARS dats tree. Also, the parent

pointer sibling pointer of the new senior node must be set to zero,

b2

ISR N PO

Fortable C(LPARS Filirg Structure -- 4
THE TREE ILFCRMATICN (TI) FILE(S)

TREE1
1 rorticn cf
/ N\ TREE1 used TrHEEZ
/ \
< 3 -——— Z ——— 1
/ \ / \ / N\
/ \ / \ / \
y 5 4 5 < 2

(I.CTE: numbers in the above trees sre slot numters)

i\ 1 | senicr slot ' 2 | senior slot
i jm——) WoemememesSee | - eSeseSwses-
§ slot nos. siot nos.
! - TREE1 -——- TREEZ
1 i 1) entry table 1 i C | entry teable
TEEE ===
2 P 2 HE I
fmmed bl
1 3 HEC 3 i C
Jm—— f===)
4 P4y 4 P2
Vm== jme=i
5 V5 s v 3
f=m= ym=——)
6 y 0) 6 O
F Figure 4-6 Creating a tree relying on

| data tree entry table

irg Structure -- 4
(TI) FILE(S)

-3

indiczting there zre no pcrents or siblirgs. Trine

4
=
«

-

ot
o3
ol
[&]
a
o}
b
(@]
-3

ncde sict rumbter (fcung in the TI nezcder c¢f the new tree) is

{n
m
ot
ct
¢l

rcint to the serior ncge.

Ey using oris methcd cf date tree creation, all the stru Turel
pointers in the rnew tree do nct nave to be changed. an exemple cf

tnis method car be fcund in the subprogrem LXFRMN,

=
.
1)

CLPA®S FILE "FREE"™ LISTS

In the logic and data tree files ¢f CLPARS (anc scme "fixed"
files), we have the concept of 2 "free" list of entries or rodes.
These free entries or nodes at one time were 'active” within tne
tree structure, but were subsequently deleted, or mace "inactive".
These inactive entries can now be usec when z rew entry or ncce 1is

to be added to the tree.

Within the header of the tree files that *rave "free"™ 1lists
(the Tree Vector file does not have z "free" list), resides the
informaticn necessary to maintain the 1ist. This informeaticn
consists of a pointer to the head of the free list, a pointer tc
the end of the free list (actually the end of the file), and the

number of active entries or nodes in the tree.

Each entry or node in the "free" list hes a pcinter tc¢ the
next entry or node in the 1list (this is a one way directiconal
list). This pcinter resides as the first element in the entry or

ncde. (See Figure 4-7).

gy

()
entries in
tree
Pcinter to head cf
‘ree list
Pointer tc enc c¢r
free 1list

I 'e
L Ch

A Tree File

rortabtle CLFARZS Fil
CLFARS

ing ttructure -~ &
FILE "rfEe"™ LIEIC

Aok

t
] Header
o meeaea ‘ :
i | =D i
i I e ittt i
i ‘ - } (e
s o E
i) [Badad sl intindaddad b dadb b \
H i VISSSIISS SIS Tree Entries
) ' VISPl (cr ncdes)
]] | Sttt Sttt]
| i VISILII I Shaded regions
i i IS denote "azctive"
f i T ! entries.
i i ~=>1 i
| . ' ==
i . D ettt H !
' . VI1117777 7777700777777 |
H I V1IN0 !
| . R it ' !
i H -— i 1
e > .
] | Badhadd s et et]]
: V1111170000070 77) i
H VI 117 i :
................. S cmmrcmceccmm——ne——en {-—
End of File

Figure U-7 Free List of a Tree File

45

ORI S

Filing Structure -- 4

wher the free list is empty, the pcocinter tc the frezd cf the
free 1ist arc the pc.-t2r te the end cf the free list will tcth te
gcinting te the enc cf tne file ‘when ar Mactive™ erntry teccmes
"iractive" c¢r celeted, 1t 1s enterecd into the free list in the

fcliowing menner:

1. Tre pointer t¢ the head c¢f the free list is plzcecd in thre

first element of the cdeleted entry.

b2

2. The pointer to the head of the free list is changed sc

roints to the deleted entry.

. The number of "zctive" elements in the tree is cdecremented

ta)

by one.

When a new entry is to be added to a tree, the free 1list is

consulted first.

If the pointer to the head of the free list is equal to the
pcinter at the end of the free list, then there are no "inactive"
ncdes within the tree. Therefore, the tree (file) is extended to
accommodate the new entry, and both the "head" and “end" pointers
of the free list are reset to point to the end of the file, The

number of elements in the tree is incremented by one.

ue

Porveble CLFARS Filing Sttructure -- 4

CLPRKE FILE "ERLEE™ LICTC

hcwever, if the free list <ccntains scme "iresctive" rerters
(i.e., M"hezd" not egual to "ernd"), the "hLead" pcinter is usec tc
cbtain its new value frcm the "inzctive"™ entry to wnich it is

rcinting. Agein, the rumber of elements in the tree is incrementec

bty cre. (licte: the number of elements in a free list czan be fcunc
y

by &adding one tc tne tctal number of "zctive™ elemerts in the tree

ard subtracting that quantity frcm the "end'" rointer.)

4.4 THE TREE VECTCR (TV) FILE

The vectors of a data tree are stored in its Tree Vector file.
The vectors are grouped together by 1lowest nocde to facilitate
access to the set of vectors in a lowest ncae and tc free the TV

file of pcinter storzze (see Figure U4-E).

The header of the TV file contains the last lcgic designec (cr
evaluated) on the tree as well as the file codes of the files that
make up that logic tree. It zlso contains & pointer to the end of
the file. An entry ir the TV file is identified with a vecter. 1In
it, the vecter is stored along with its IC, the first character c¢f
the lowest node that the vector resides in and its temporary logic
indicator (see Figure U4-G). The temporary logic indicator will
contain the node number that the vector was placed at from the last
logic applied to the tree (except for nearest neighbor 1logic).
This element will be used during logic design or eveluation to keep
track of the logic node at whiech the vector currently resides,
This is necessary because a class may have vectors in several logic

rodes during logic design, and during evaluation it is s conveniernt

u7

Pcrtable CLPARS Filing Structure -- &
TLE TREE VECTCw (TV) FILE

Elenient
1 thru & i Latest Lcgic lame '
e et e e D L L |
¢ i The File Ccde of the LI File]
e et R ettt 4 Heeder
10 y The File Code of the LV File i
[ahadekebakeiadaiad ot nhakadestaddafedeiad ettt i
11 \ Next Cpen Entry at End of File |

]]
] '
! Vectors in a liode H
i i

L]

1
1
Vectors in z lode H
'
]
]

Figure 4-8 The Tree Vector File

4e

5. sommR -

Portaeble CLFARSE Filing Ctructure -- 4§
THE TREE VECTCR (7V) FILEL

1 rel. 1 rel. 1 rel. (NDIM) rels.
i .
]] 1]]
i i Class i Vector i Logic i Vector H
i Symbcl | Identifier | Indicator | VNeasurements |
t]] 1 []
[} 1 1] [}]

Figure 4-G A single CLPAKS data vector (as found in TV file)

49

e

Portabtle CLFARS Filirg Structure -- &
THE TRLCE VECTCE (TV) FILE

[aie]

way o©f «keerping track c¢f the results. Morecver, 1f & lcgic design
15 not ccmpleted in a given user session, then the lcwest logic
nocde that each vector resides in is saved in the temporary element

urtil the next session., The lcgic will not have toc be rcevaiusted

defore the lcgic design is resumed.

Ncte that the length of a TV file logical entry is three more
than the dimensicnality of the vector and essentially depends corn
the dimensionality. This dependency presents no difficulty since
the dimensionality is stored 1in the Tree List file entry

ccrresponding to the dsta set.

L.5 THE TREE LIST (TL) FILE

The Tree List file is a list of the cata trees that the user
has 1in his directory. It has a two element header that contains
the number of entries (dats trees) in the file, and an algphabetic
list pointer. Each entry corresponds tc a data tree. An entry
contains two File Cocdes (FCL) representing the files that make wup
the data tree, the dimension of the tree, space for an 8-charsacter

name of the tree, and an alphabetic list pointer. See Figure 4-1C.

Wwhen a data tree is added to the system, its Tree List entry
is placed at the bottom of the Tree List file. When a data tree is
deleted from the system, its entry in the Tree List file is filled
by the 1last entry in the file, and the count is decremented by 1.

Consequently, nc free list is mzintained in this file.

50

r S o —aaee—~—rs —

Portable CLEARS Filing Structure -- 4
TLE TREE LIST (TL) FILE
Element
1 { Lumber of Entries !
| mmcmccecrmcc e rca e r e ——— - ! liezsder
2] Alphsbetic Link List Ftr. \
[]]
 eccccoresmmmcmcac—ce e — e ———— mme—cenma——
3 ! File Code (FCL) for TI File |
]]
i cmccamccecmccceccccemecec—c———— !
4 ' File Code (FCL) for TV [ile |
[]]
e mccccceccmcrecc—~camm———————— '
5 ! NDIM H
[} |
 emcccrccccncnrcaerce e a———————— !
€ ! Alpghabetic Link List Ftr. :
])
emmceccecceccmcccc———eam e —————— '
7 i T i
: :
8 g R !
i H
9 i E ;
] i
1C H E i Entry 1
]]
1 [}
11 ' N i
1] 1
] 1
12 H A i
i i
13 i N i
' i
14 ! E i
[]]
e ccecmccc— e a ;o ————————————— . ‘
[}
]
1
e I
13
.]
]
. []
!
i Entry 2
'
!
1
1]
]
{
t
[}
|
]
t
)
1
]

Figure 4-1C The Tree List File

51

Pcriable CLPARS Filirg Structure -- 4
ThE TREE LIST (TL) FILE

The alphabetic list pcinters are used to keep the list entries
in an M"gzlphabetie" crder. All new entries to the TL file zare

"rlaced" in the prcper orcer via these pointers.

4.,¢ TEHE LCGIC INFCRMATICN (LI) FILE

For each lcgic tree that exists in portable CLPARS (i.e., for
each logic tree 1listed in the Logic List (LL) file) there will
exist a Logic Information (LI) file =&and Leogic Value (LV) file.
These files have a parallel in the TI and TV files associated with
each data tree. The LI file contains general information abtout the
logic tree and 1its structure; the LV file contains the actual
logic (decision criteria) for each node of the leogic tree. In this

section the LI file is discussed.

The header part of the LI file has a fixed length; the length
is a function of the maximum numter of "displayzble" classes (i.e.,
lowest nodes in a data tree) that ~e zllowed for any dsta tree.
Figure U4<11 shows the <content of the header, assuming 50 is the

maximum number of classes allowed.

Most ot the content of the header is self explenatory. NAN
(next available node, element 15) is the ertry number (in the body
cf this file) for the next node to be defined. In general, HKNAN
will be one greater than NNU (number of nodes used, element 17);
it will only be different in the cases where certain nodes, already
having logic defined, have been deleted. The current logic node in

element 1€ is only used in conjuncticn with the design of 1 cr 2

52

clerent

1-12

15

14

15
1€

17

1€

16

A9} n
(o))

Figure 4-11

Fortatle CLPARS riling

Ctructure

THE LCCGIC ILFCRMATICHL (LI)

heme cf
Lesign Lata Set
(CLS)

NCLAS - YNumber of Lowest liodes
(irn LDS)

NAN - liext Availzble Hode Entry
NGE - Next Cpen Entry at end of file

Nl -« Number of licdes Used in
Legic Tree

Current Logic Node
(Group 1-S and 2-~S)

RNF - Use Reassociate lames Flag
(for Evaluation)

LVEL - lNumber of Elements in LV
File Entry

NILN - Number of Incomplete
Logic lcdes

Space for liame of First Class
(Cnly NCLAS Spaces Used for a Tree)

Space for Name of £0th Class

A Priori Probability - First Class
(Only NCLAS Spaces Used for a Tree)
A Friori Probability - 50th Class

53

- - - -

The Logic Information File Hezcer

Pcrtable CLPARS Filing Ctructure -- 4
The LCCIC INFCEWATICL (LI) FILE

spsce group logic (this logic design is a two step prccess whicth

might nct be completed).,

The entries in the body of the LI file eschk describe a rode crf

the lcgic tree; the 1length of these entries 1is fixed and
; ircdependent of any data =set Dparameters (e.g., the vector
|
g dimersiconality or the number of classes), but it 1is mzchrine
dependent beczuse of the clesses-present bvit map, which is
described later. The logic node number c¢f a node will be the same
as its lcgical entry number in the LI file. This gives & simple
and unique way of assigning logic node numbers. Figure 4-1Z shows i

the content and format of en LI file entry.

The following list shows the logic type code of the current

CLPARS 1logics, &long with the appropriate subtype codes. (Logic

type and subtype codes are elements of the LI file entry).

Logic Code Type

; 0 undefined (incomplete)
1 - pairwise logic
2 - group logic

1 - one-space

two~space

n
]

(VS

- Boolezn
3 - nearest mean vector logic
b - closed decision boundary

5 - nearest neighbor

54

A

B s el
ouuny oy

R it A e o e

Forteble CLPAEKS Filirng Structure -- &
The LCGIC INFCRMATICL (LI) FILE

clement
1 i Logic Type Ccde (cr Entry Link) i
! i
2 ! Logic Sub-Type Ccde i
] t
i i
3 i Cption lumber of the routine that created the lcgic |
i et this ncde (0 if lowest node) i
i i
4 ! Node Level (Senior lode is Level () i
: i
5 i Humter of licdes Eelcw this lode at kext Level i
i i
6 { Entry Number of Farent lHode (0 for Senicr licde) '
) 1 i
]]
1 i Entry Number of First Child liode H
)]
1 | . {
g | Entry liumber cf lNext Sibling i
! (0 if Lo Next Sibling lode) : i
i 1 L
i [} .
] ! Entry kumber (in LV File) for Start of i ;
i} Decision Logic for this Node i
t |
1 t
10 | Entry Number (in LV File) for keject Strategy i o
! for this liode - 0 if lio Reject Strategy i E
D et D e DL T \
i Origirzl LCesign Leta Set Class Name \
11=-14 | i
i for this lcde (only for lowest nodes) |
(] [}
| T R T R R e e aaEmSe-]
! Reassociated Clzss Name ;
1€-1¢€ | i
' for this lode (only for lowest noces) |
]]
[Bafadiadushabeiheshndei ettt b b o it ndadadeiadatindeniathndadaded ek ediab ettt o A d e [}
16 ! Modified Logic Flag i i
1])
] 1 .
<0 i Number of Classes Present at lode (0-for reject)]
et E L L S L PP e P i
21~ ?

[agd
| i
cr
.4
o
pel
o
[
7]
-
m
3
)
ct
-
3
m
(@]
—
13}
7]
0n
(14
7]
o
-
[
w
(]
3
(g
45}
ct
ct
oy
[N
0
bz
(o}
[=}
(1]

- D A S D VS D L D S R D R TR D R R D G R @e €D W G G ER G5 D

Figure 4-12 The Logic Information File Entry

55

rtabtle CLPARS Fil

C ing Structure -- 4
THE LCCIC ILFCRMATICY

W (LI FIL:

Since fpairwise lcgic, nesrest meean vector 1lcgic, <closec
decisicn boundary, end nearest reighbor logic have nc subtypes of

legic, their subtype code will be zero (rmearns uncefl.ned).

Clcsed decisicn boundary, nowever, dces hasve & "sup=-Llccek"
ccce that is found in an element in the LV file (because noces in a
clcsed decision boundary logic are allowed to have mcre than cne

type of decision boundary). These sub-blcck codes are as follows:)

1 - hyperrectangular sub-block

hypersrhere sub-block

[AD]
[}

: - hyperellipscid sub-block

If the value of the logic type code is negative, it indicates
that ¢the node had been defined and subsequently deleted znd the
vzlue is now 3 link pointer to the next available node entry. This
is wused in conjunction with NAN and NNU elements of the hezder and

prevents lost "holes" in the entry portion of the file,

Elements containing node level, first child node, and next
sibling node facilitate searching the 1logic file entries for

drawing, and listing or deleting logic nodes.

Elements 9 and 10 zre the entry numbers in the LV file fcr the
first entry containing the logic decision criteria and the lcgic

for the reject strategy, if it exists for this node.

ferteble CLFALCS

riling Structure
THE LCGIC Ii TICL

L -~ 4
FCRMATICL (LI) rILE

for ccmpletea logic nodes (i.e., nodes Wwith c¢nrly & sin
cless present), elements 11 through 14 will contezin tre rzme c¢f the
cless at this ncde (cdesign datz act cless neme)., If it happers *“co
be @ reject node, the name c¢f the "cless" will be "¥¥3%nw. =ithcugh
tnis is zlso the name c¢f the senicr node, there i3 no cenflict.,
The type of logic cocde for z completed ncde will te ¢ cr undefinead,
since there is no lczic; there may bte, hcwever, z reject strategy
defined. Elements 15-1§ contain a cless name tc te associated with
the originel deta class (reassociated class rame). This nreme mey
be wused during logic evaluation to associate a test data cleass to
the o¢riginel design datz class. curing 1logic crecstion the
reasscciated class name and the originel desigr data set cless name
are ldentical. The reassvciated class name may be changed by the

command REASKAME.

The ciasses present bit map, which starts at element 21, 1is
one plece where it is necesszry toc deviate from the standard methcd
of using real format words for each element of 2 file. This item
is 2 binary string equal in length to the maximum number cf classes
allowed irn the system. If the ith bit of the string is is &z ©o¢ne,
it indicates that the ith class (in the list of cless names in the
header, starting at header element Z3) is present; if the bit 1is
zero the cless is rot present. 7Tc use & single real word, for each
class at ezch node, is felt to be excessive in storage space.
Thus, a machine dependent (because of word length) scheme is
utilized for this bit map. (Cn tke FLP-11 mechines this bit wmafp

will be contained in two real elements). Fcr a reject node, the

57

e e B AL i e & i bt i o

PR

CLPARS Filirg
C INFCRWUATICU) LE

of clesses crecsent is one. For <¢his type cf
>

element c¢f the bitmeg conteins z
dete set class names found in the LI hesder. The

during logic evaluatiocn.

58

used to obtain the name of the cless that is associzrec with tre

lcgic node. 7The pointer is alsc used &s an "assigned class" index

titmar is undefired and the rnumter of clesses Lrecent I1s zerc. rcr ’

2 lowest (ccmpletecd) ncde, tie bitmep 15 recefinec and the numter

rcce, the first 3

pointer into the list of desigr
hy (&)

pointer <car tGte

R

Pcrozble CLFARE Filing ciructure -- L

F ' TLHE LCGIC I.FCRINATICH (LI) FILZ
' (LI File Initislizasticn)

! wren & lcgic file is created bty the cemmencd LAMELCG, <the LI

file ancd the LV file will be createc. LNAMELCC will set the

fellowing velues in the LI Tile:

leame of cesign dsta set (LLS)

Cata Set [imensicnality (NDIM)

The number of classes in the cdata set (LCLAS)
The next available ncde (liAN=z2)

fiext cren enrntry at enc of file (JliCE=2)

iwumber of ncces used (HlLU=1)

Reassociated tames Fleg (RLF=0)

List of Lowest lcde Class lames

List of Class £~ Pricri Probabilities

The above values are placed in the hezader; those menticned
belcw are put in the first entry, which is the senior node of the

logic tree.

Legic type code (= 0)

Node level (= 0)

Number cf nodes below (= C)
Ent:y numbter of parent (= C)

NHumber of classes present (= }NCLAS)

The bit map which indicates all classes present

Fcrtcble CLFAKS Filing Structure -- 4
THE LCCIC VALULE (LV) rlILE

4.7 Thi LCCIC VALLE (LV) FILE

The LV file of & logic file pair contairs the perameters cor
verizbles which <cefine the actual decision lcgic criteriea fer any
rcde of @ logic tree. The entries &are fpointed to bty the rcce
entries in the LI file. Entries of the LV file zlso ccntein tre

bliccks which specify reject strategy logic, if used st ary ncce.

In keeping with the filing system ccnventions esteblishec for

portable CLPAES, &

—

1 ertries in the LV file are cf the same length;
this length is established at the time of <crestion s&anc¢ 1is =&
function <¢f the dimensionzlity of the dzta set on which the lcgic
is being designed. tHowever, the different types cf logics require
different amcunts c¢f storage. Tc accommeodate this flexibility
within the LV file, the cesign is such that & 1logic block (the
definition <criteria for the lcgic of a ncde) may be ccntzined in &

number of entries of the LV file.

The entry in the LV file for & node contains the entry numter
of the first entry of the logic block in the LV file. The first
element of an LV file entry is a link which points to succeed. ry ..
entries of that logic bleck. A zero in the first element indicates
that this entry is the last entry of a logic block. This 1linking
is necessary for the efficient deletion or chcnge of the decision

logic at a node.

Portable CLFARS Filing Ctructure -- 4
THE LCCIC VALULE (Lv) FILE

The lerngth of zn entry in the LV file is LZIN+2 with ¢ minimum
lergth of 12 elements. Tuis length was chosen after anzslyzing tre
spece recguiremenrts for the different types of 1lcgic blocks and
¢ptimizing the cheice of length as z trade cff between unused spece

and ccriplicated structure. The minimum length ¢f 12 is needed 1in

tne Fisher pairwise lcgic block.

Entries that ccmprise a 1logic block dec nct have to tbe
contigucus; sirce they asre feorward linked to each other, they dc
nct have to be sequentizl. They will be non-sequentizl cnly in the
cases where a previously designed logic has been deleted. Elements
in the header ancd the link element of ezch entry implement this

carability.

The LV file header contzins three elements; these are defined

in order below:

Element Contents Initial Value
1 NEU total number of C
entries actively used
2 NOE next open entry at end 1
of file
3 NETU next entry to use 1

NCE will differ from NETU only if there has been a deletion c¢f
defined 1logic. The totel number of entries that could te found in
a "free" list (deleted entries list) is found by NOE - (LEU + 1).
Initiel wvalues, set when the LV file is created, are shown at the

right.

61

Fortable CLFARS Filing Structure -- U
THE LCCIC VALUE (LV) FILE

The use c¢f the first element of each entry, the next entry
link c¢r 1lirk element 1is similer in all cases. It the number is
positive, it is the entry numter of the next entry in the tlock;
if 1i¢ is =zeroc, it is the last entry used by & blcck; 1if it is
negative, it indicates that it was a deleted entry, but its
absolute wvelue is still trezted as a lirk (now 2 link of cdeleted,
and aveilable for reuse, entries). The last entry of the string of

deleted entries contasins a link to LOE, the next entry after all

used entries. {See Secticn 4.3 on "free" lists).

In additicn to the 1link element which forwerd 1links all
entries containing logic for a node, certain entries may contain &
link tc 2 particular porticn of the 1logic. This 1is dore to
facilitate getting to <certain sections of the mcre complicsted
types of lcgic or logics which permit suboptions (e.g., the LMV
ccmmend). Figures L4-13 and 4-13a illustrate this multiple linking.
Note, in the Fisher Fair logic block example in Figure 4-13iA, there
ére three forward 1links with a value of zero; cne for the mein
logic block, two for auxillary logic regions. Each represents the

lzst entry of their respective regions.

Figures 4-14 through 4-24 describe the file entry formats for

different types of logic bleocks.

&2

L

Structure --

THE LCGIC VALLE (LV) FILE

Porteble CLPARS Filing

e aaa (=

nth Erntry

-=> K
{
i

SR i

i

)
A4
{ { 1
] }]
] >)]
1 1S { [}
1 2 [} [}
[} = i t
] wl] {
)] !
' L]]
) + 1]
L} ©] }
] { [}
*
~1
*
#*
*® ok ok ¥ K Kk
\ 1
] v
)) [}
[} I t
] > 1]
\ 1 1 [}
[} L) [}
i <]]
t [£1] [})
|} 1]
[} ko) !]
\ = \ {
[} o~])
{ } 1
[£8)

1

| -

1]

1 1
¥
1
[}
L
'
'
]
i
»
1
t
I

| -

n+2 Entry
P g

M

k odk M ok e K &k ok ok

i
|
¢
1
i
Ll
i
1
1
{

3rd Entry

[}
]
]
(
i
)
1
[}
1
]
i
'

- am w. o e - - -

.

Y el]

Kormal Link ---=<>
Multiple Link * * ¥ 5

t
i
[}
L]
4
|
[}
}

LAST Entry

—— e ——

Multiple Linking Within A Logic Elock

Figure 4-13

€3

r

Portzable CLPARD Filing Structure ~~ 4
THE LCGIC VALLE (LV) FILE

Logic block
heacer (pointer to here found ir LI entry)
1]

L7117 177707707077====30770707770/0707770777-~~=> ., /1777777777777 -==

17771711777 7717 / / / / i
(7777777777777 / ncde number / / noce nkr. / |
/ ¢lass pair / associations / / gsscc. /
-~/ links ptr. / / / / / !
\ S50/ 17777747717 77777 1774777777777 E
1 i
-------------- DILIIILIIII I 7170017777777)/ mmmmmcaa e cceaamm
------ / /e===>... L0 rext entry
i -/ Class Fair Links / of cless pair
from last | | / / links (CFL)
entry of N / /
CEFL I L7077772777777277777777777777777)cemmernnaaaa
\] 1]
i)] 1
H | mememeeeccmccccccnee {
:) i | i
H v v V .
-/ e cmeaa I - ~=> s SIIIIISIII S~ o
-~~=/ aux. ptr. / | |} / class pair/ | | = ~ee-- / aux. ptr. / | !
! / /4 / neader / 1} } i / /o :
g / (cph) /1 / (eph) /o0 i / (cph) /) .
S 1777777177777 4 1777771777777)) E (1001777777077 i
) i]]] L] H '
Vo ==l K- -/111171 10777 7L- \ -l 77117777 /K-
VY / i V7 / H Y /
it 1+ / fisher / H i/ fisher / i !+ / fisher /
{1 f direction / ! { / direction / i '+ / direction /
R Y 4 / \ N /] 4 /
VN AN i VL1077 h Voo S/
\ [} t]]]]
[}] ! [} ' [} t
S e LIPS -mm \ ->7// zerc //// ,
i / / / / H / / :
H / fisher / / fisher / i / fisher /
{ / orthoganal/ / orthoganal/) / orthogsnal/ {
i / / / / i / /
1 /1171777777777 1711111711777/ E 10117117 71717777 !
] [}
! ¢l .vs. ¢2 ¢l .vS. ¢3 { c(n-1) .vs. c(n)
|]
] 1
——=ll I ~=> ... /// 2Zero [,/ -=3/17777 zero /7777 ']
/ / / / / /]
/ optimal discriminant logic / / any auxillary / = |
/ / / / / logic regicn / | ki
1771717117777 1171717171777 [177717717177777777

Figure 4~134 Exsmple of Fisher Fair Logic Elock

€4

Entry lumkter 1

Element

Entry liumber 2

Element

.
.

KEIM+1 -
NDIM+2

>

Portable (LPARE Filing Ctructure -- &
TIIE LCCIC VALUE (LV) FILE

Content

Link Element - Entry lumber of Second Entry
Number of Eoundaries (= 1 or 2)

licde humber Associated with FKight-Most Legion
liode liunber Associated with Left-lMost hegion

Node liumber Associated with Middle kegion
(if £ Boundaries)

Right Threshold Value

~

Left Threshold Value (if 2 Boundaries)

Content

Link Element (= Q)

NDIM L[iscriminant (Projection Vector)
Coefficients

lumber of lesurements Lsed

Figure 4-14 Cne-Space Croup Logic Elock Format

Fcrtable CLPAFS Filing Structure -- 4
THE LCGIC VALUE (LV) FILE
Entry Lumber 1

Element Ccntent

-~ - .- - e wr w- --

1 Link Element

liumber of Eoundaries - liE (=1 to 2)

[AD]

2 Number of Segments in First Eoundary - !S(1)
(= 1 to 5)

y humber of Segments in Seccnd Eoundery - NS(2)
(= 1 te 5) (= C if LE = 1)

5 Link word to Entry Containing discriminant
vector of First Segment of Second Eoundary
(if it Exists)

6 Link to Entry Containing First (znd second,
if it exists) bcundary segment discriminant
value thresholds.

7 l.ode Number Associated With Excess FKegion i:

8 Nocde Number Associated With Convex Side of
Eoundary 1 ‘

9 Node Number Associated With Convex Side of

Boundary 2 (Ignored if KE = 1)

Kemaining KS(1) + NS(2) Entries

Element Content
1 Link Element :
I4 - R
i i
. : ‘L
. > NDIM LCiscriminant Coefficients
. ! [
; :
NDIM+1 - | 8

Figure 4-15 Two-Space GCroup Lcgic Elock Format

-

Portable CLFARI Filing Sftructure -- 4

TEE LCGIC VALUE (LV) FILE |
i
Last Entry
ciement Content
1 Link Element
z -
i .
. 1 -
. > Threshold Values :
. ' i
3 H (KCTE: Znd-boundary thresholds zppear f
' 10 - immediately after those of fist -
boundary, with no intervening space)]
‘é
" 4
[
x

Figure 4-15 Two-Space Group Logic Elock Format (continued)

67

Fortzble CLPARS Filing Structure -- 4
THE LCCIC VALUE (LV) FILE

Entry lumter 1

Element Content
1 Link Element
z Number cof Characters in Lcolean Statements -

HC (max 132)

Node Number Associated With True "Zfide"

L)

4
]

4 Node Numter Associated With False "Side"

femaining Entries -~ Number Sufficient to Contain [C Elements

Element Content
1 Link Element
z -
[}
I
. i
. > Characters of Eoclean Statement
. g
)
NDIM+2 -

Figure U4-1€¢ Boolean CGroup Logic Block Format

Fortable CLF&HS Filing Structure -- 4)

THE LCCIC VALUE (LV) FILE

Ertry lLumbter 1

tlement Content

1 Link Element

z lumber of Classes - LCLAS i

: weight Flag: 1 - lio heights, :
2 - Weighting Vectors, ;
3 - Weighting Matrices,
4 - Guadratic Classifier é

4 Link Element tc First Entry Ccontaining lears

(9]

Link Element to First Entry Containing heightirg

Vectors
6 Link Element to First Entry Containing heighting .
Matrices 1
7 Ignore Measurement Flag: C - Use All, i
1 - Ignore Some |
8 Feject Flag: C - No heject Eoundaries, 1 - Use
Reject Eoundaries -
9 Link Element to First Entry Containing RKeject
Values
10 Link Element to First Entry Containing
Determinants

Entry Kumber 2

Element Content
1 Link Element |
R
> Measurements to be Ignored Flags

« s o N
[}

1 Use Corresponding leasurement
0 Ignore Corresponding Measuremert

LNDIM«1

NDIM+2 Mumber of leasurements Used 3

Figure 4-17 MNearest Mean Vector Legic Elock Format

66

Portzble CLPARS Filing Structure -- &
THE LCCIC VALUE (LV) FILE

lext Croup of Entries - Number sufficient to contain LCLAG4+]

Elements
Element Content
R Link Element
z Node Nlumber Associatea w/rejects
3 lode lumber Associated w/first class

Node Number Associated w/last class

Next Group of Entries - Number sufficient to contein
NCLAS elements

clement Content
1 Link Element i
Z -
]
i
. > NCLAS reject boundary distance values
.« (square of value entered by user)
]
[}

Next NCLAS Entries - COne entry per clsss

Element Content

. > NCIM Mean Components

NCIM+1 -

Figure 4-17 MHNearest Mean Vector Logic Elock Format (continued)

Pertable CLPAES Filing Structure
Tk LCCIC VALUE (LV)

oAl |
(S]
P v

next tLCLaS Entries - (ne entry per cless

Element Conternt
1 Link Element
z -
]
[}
. '
. > NCIM weighting Components (veriance vector)
. |
H
NCIM+1 -

hext NCLAS*¥((NLCIM/Z2)+1) Entries; (NCIM/2)+1 entries per class

Elemernt Cocntent
1 Link Element
z -
i
. 1
. > KOCIM*¥(NLCIM+1)/2 packed weighting matrix
. H components (inverse of covariance matrix)
]
1
MNDIM+1 -

Remaining Entries - Numter sufficient to contain LCLAS elements

Element Content
1 Link Element
z -
1
]
. i
. > NCLAS determinants of the covariance matrix of

. ' each class
)
i

Figure 4-17 Nearest hean Vecter Logic Elock Formet (continued)

71

1
>
)

B

r

G

)
ES

'R}
2
|94
(€]

e

Tinis

AN
[0}
£2

et
1)
o3
ol
Q
(@]
L)
O]
iy
2]
12]
W
rt

)

w

2lcments

~
“

ificien

-

Ler su

aun

43
£
W
1>
[

(&)

Ol

- - -

[%)
)
]
rel
L)

)
[72]
[$]
e
o)

s
ment L
vs. c1l

Pei

1

lemen

Ele

class 1

c
a-1e

Content

Lirk

class

r o3 1,

L1inK
rigure

- - - -

L.
ord

[&4]

o,

B
3
1

jom 2

.
[

-2

3}

A
'
O

-~

)
rd
6]
P
4

Y

ot

O

L)
3

R
@]
[

~ s

i
J
a3

9]
v
1

2]
1]
)

(94

1)

v]

G

B
a0
>
9]

ve g

ey

)

o
]

1y

w4

t} -

3

vy

w)
r
Q

o
$]

73

1%
[
O

v
19
O

O
IS

>
(W]
s

P
t

-

-

11

./
o]
0
T
ret
B
P

[4s]

-
+)

2]
vy
o

ot

8]
(s

Fcrtztle CLPARS Filing Structure -- &
THEE LCCIC VALUE (LV) FILE

Second ¢f Three Entries

Element Ccntent
1 Link Element
z -
. \
. > Ccetfficlents ¢f Fisher Lirection
/
HEDIMi+1 =

Third of Three Entries

Element Content

1 Link Element

LI \Y
]

> Coefficients of line perpendicular to Fisher
/ Cirection
NLIM+1 -

Figure 4-18 Pairwise Logic Block Format (continued)

T4

o

. -] .] ey VN
¢

Portable CLPARY Filing Structure -- 4 i

' ThE LCGIC VALUE (LV) FILE f
|

{

Entry Lumber 1

Element Centent
1 Link Element)
c Ylumber of Ecundaries - {E (=1)
3 Humber of Segments in EBoundary - LE (= 1 tc &) ?
4 UNUSEL Q
4
5 UNUSEL
6 Link to Entry containing boundary segment]
discriminant value threshclds.
Py
7 Irdex to node-number-zsscciated-with-clzsses
-in-the-excess-regicn entry (i.e., the index E
plus one points to ncde associzted with the 4

Excess FRegion) 1

Index to node-number-assccisted-with-clzasses
-in-the-convex-region entry (i.e., the index
plus one points to nocde associated with the
Convex FLegion)

o

9 UNUSEL

Remaining NS Entries 1

Element Content
1 Link Element .
2 - i
i
. i :
. > NCIM [Ciscriminant Coefficients P
]
R]
NCIM+1 - ;

Figure 4-18a Cptimal Liscriminant Logic Elock Fcrmat

75

EREN..) Ut B eme ot

Pcrteble CLPARS Filing Structure -~ 4
THE LCGIC VALUE (LV) FILE

Last Entry

tlement Content

- s o o

Link Element

Threshcld Vslues

Figure 4-18a Cptimal Ciscriminant Logic
Block Format (continued)

76

Portable CLFARS Filing Ctructure -- 4
ThE LCCIC VALUE (LV) FILZ

Entry lLumter 1
Element Content
1 Link Element
c Humbter c¢cf classes - HCLAS
3 Fleg: 1 - create node of cverlapped vectors
C - reject coverlapped vectors
L Link element to first entry containing link
elements to sub-blocks for each class
Hext Group c¢f Entries - Number sufficient to contain
NCLAS4+2 elements
Element Content
1 Link element
2 -
. \ IICLAS+2 list of node numbers asscciated
. > with each of NCLAS classes, the reject
/ node and the overlzap node
llext Group of Entries - Number sufficient to contzin

Element

Figure

2¥NCLAS+1 elements

Content

Link element

Link element to the last entry of the
preceding group of entries

(which contain the node numbers)
Link element to the first entry of the
sub=-block for the first class

Link element to the last entry of the
sub-block for the first class

.

4-1¢ Closed Lecision Boundary Logic Elock Format

7

Portable CLPARS Filing Structure -~ U
THE LCGIC VALUE (LV) FILE

Entry lLumter 1

Element Content
1 Link Element
1
c Sub=tlock type = 1
3 -
. > NLCIM Threshold

Type Flags: C user defined

1-20C percentage of
data range (1C0 3
is the default)

HCIM+2 -

Entry hkumber 2

-

el "

Element Content
1 Link Element f%
z Easis vector type: 1l-coordinzte, 2-cverall ;?
eigenvectors, 3-specific i
class eigenvectors '
3 -
i 4
] P
. H |
. > NPIM low threshold values i
t
T
NCIM+2 -

Entry Number 3 f

Element Content f!
&
1 Link Element ;
|
2 - 2
i |
. : ;
. > NCIM high threshold values |
! H
| b
NCIM+1 - x

Figure 4-20 Hyperrectangular Sub-block Format

! .

Porteble CLPARS Filing Sltructure -- 4
THE LCGIC VALUE (LV) FILE

Next LLIM Entries (not used if coordinate basis vectors)

Element Content
1 Link Element
2 - !
i
. > NLCIM components of basis vector i
L] : i
i
NCIM+1 -

R

!
Figure 4-20 Hyperrectanular Sub-block Format (continued) y

Fcrtable CLFARS Filing Structure -- U4
THE LCGIC VALUE (LVv) FILE

Ertry lLumber 1

Element Content
1 Link Element i
{
e Sub-block Type (=2)
3 Center Vector Type: 1-mean of cless, ;

2-midrange of cless, 3-user cdefined i

i L kadius Type: ©C = user defined
b 1-20C = percentage of data range
(100 is the default)

(6)]

Radius (squared) of hypersphere

Entry kumber 2

Element Content
1 Link Element
2 -
1
]
. H
. > NCIM components of center vector
]
S
NDIM+1 -

Figure 4-21 Hypersphere Sub-block Format

80

] Portable CLPAKRS Filing Structure -- 4§
THE LCGIC VALUE (LV) FILE

Entry humter 1

Element Content
1 Link Element
c Sub-block type (=23)
3 Center vector type

(see hypersphere sub-block for code)

i "C" value type (see hypersphere sub-blcck
radius type for code)

5 "C" yzlue (corresponds toc radius
in hypersphere)

6 Axis Type: C = user-defined; 1-20C = ¢ of
default axis lengths (100 is the default)

Entry lkumber 2

Element Content
1 Link Element
z -
1
[}
. i
. > NCIM components of center vector

]
1
[}
[}

NHEIvel -

Figure 4-22Z Hyperellipsoid Sub-block Format

81

Portable CLPARS Filing Structure -- 4
ThE LCGIC VALUE (LV) FILE

Entry lumbter 3

Element

]
. i
1
[}

NDIM+1 -

Remaining

Element

!
]
I
1

]
. 1
]
)

KDIM+1 -~

Figure 4-22 Hyperellipsoid Sub-block Format (continued)

>

NDIM

Content

- . - -

Link Element

NCIM axis lengths

Entries

Content

Link Element

NDIM components cf row of weighting matrix

82

Fortable CLPARS Filing Structure -- 4 1
THE LCCIC VALUE (LV) FILE

Entry Lumter 1

Element Content
1 Link Element
b Number of characters in Looleazn Statement - :

HC (max 132)]

; Entry Lumber (in LI file) for first
(if more than 1) logic node to use tinis
reject statement

E Remaining Entries - Number sufficient to contain LC elements 4
Element Content]
""""""" ¥

1 Link Element f
- 5
< -l A
]
. | ;‘
. > Characters of Eoolean Statement ,L
| 3
. i j
NLIN+2 =

Figure U4-23 1Independent Reject Strategy Elock Format

' ‘ T — <.A-UunInu-H-'U‘l...ll.'ﬂlﬂlw---n—gﬁ
’ Portable CLPAKS Filirg Structure -- & 1
' TEE LCGIC VALUE (LV) FILE

Entry lLumber 1

Element Content ;
______________ 1
1 Link element
< liumber of classes (KC)
3 K - number of nearest neighbors to be

used in evzluation 3

y Ignored measurements flzg (=1 mezns .
there are measurements to bte ignored) o4
5 Link tc Ignored measurements vector

Entry Numter 2

Element Content
1 Link element
2 -
)
thru > Tree name of reference patterns
)
9 -

Entry Number 3

Element Content
1 Link element
2 -
g
. > Measurements to be Ignored Vector

1 Use Corresponding heasurement
0 Ignore Corresponding Measurement

NDIM+1 -

HDIM+2 NHumber of Measurements Used

Figure 4-24 Nearest Neighbor Logic Elock Format

gu

Fortable CLPaARS Filing Structure -- &
TIE I CCIC VALUE (LV) FILE

hemaining Entries - liumter Sufficient to Cortzirn NLC+1 Elements

Element

LC+2 -

Figure 4-24

Content

Lirk element

licde humber Associatec w/first class

liode lhumber Associated w/last class
liode Number Associated w/rejects

Nearest Neighbor Logic Elock Format (ccntinued)

85

:
»
|
.*

- ' . e T e
S ——————

Fertatle CLPAEKS Filirg Structure -~ 4
THE LCCIC LIST (LL) FILE

4.¢& ThHE LCGIC LIST (LL) FILE

m

The Lecgic List file is a list of the lcgic trees that exist in
& user's cirectory. It has a two element hezder that contairns the
nur.ter of entries (logics) in the file, &nd &arn e&algphabetic 1list
pocinter. Fach logic ccorresponds to an entry. An entry ccnteins

the two File Codes (FCLs) representing the files that mcke up

M

lcgic tree, space fcr an & character logic neme, the cdimension of
the tree, the tree and class name peir, an incomglete logic flag,

eand an alphsbetic list pointer. See Figure 4-25.

Ahen a new logic is acdded, its entry is placed zt the bocttom
of tne LL file. Vhen a lcgic is deleted, its entry is replaced by
the last entry in LL and the count of the number of entries is

decremented by 1.

The alphabetic list pointer, here, has the same functicn as

the alphebetic list pointer found in the Tree List (TL} file.

&.6 THE SAVEL VECTORS (SV) FILE

The SV file is a list of stored projection vectors that can be
accessed by name wusing an arbitrary vector projecticon ogperation
(S1ARBV, SZAREV, LZAREV). The header of the SV contains the number
of vectors (see Figure 4-26). Information on 2ach vector is stored
in an entry. Vector names are one to eight characters inr length,
start with & letter, and are stored at the beginning of an entry
followed by the dimension and the vector itself. The length of &n

entry 1is the maximum vector length allowed fer normal CLPARS

g6

<" AD-al18 731 PAR TECHNOLOGY CORP NEw HARTFORD NY F/6 9/2
ON=LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI, PRO==ETC(U)
JUN 82 S E HAEHNs D MORRIS
UNCLASSIFIED PAR-82-15

2063
ap a
W:

‘ m

Pertzble CLFARS Filing Structure -- 4
l THE LCCIC LIST (LL) FILE

I Element

z i Alrhabetic List Pcinter \
R it R it | mmmmecceeea~
2 i File Ccde (:rCL) for LI File '
e e DD L e e L L b i
L i . File Code (FCL) fecr LV File i
Y DL EL L LD Lt et e LT P)
£-12 i Lecgic Rame i
| == — s c e m e c e ; Entry 1
13 i KLCIM of Lesign Set H
T it atadatatat e L L P P i
14 i Alphabetic List Fointer :
e e L L LT T i
15 i Treename, classnamre !
thru : i
2€ i of design set '
R e et e T |
27 y Incomplete Logic Flag i ;
| R s T s - : ----------
ittt | m—emm—cceene-
3+25(k-1) | FCL for LI !
]]
| Badatadesiadadiededadebalendeth et de i 08 intnadadidndei et t
i FCL for LV i
]]
| Badadadendndeiiesdidaddh et ittt ddesad st)
i Logic Name H
e LT T T e e Entry k

i Treename, classname i
i of design set !
1]
| memcccccccccccccccmcccamcca—a——— !

2+25k i Incomplete Logic Flag H

Figure 4-25 The Logic List File

87

T e . A e M i . Asc < N Y A htd

Element

n

thru
1C

M

thru

€1

Portable CLFAKS Filing Structure -- 4§
THE SAVEL VECTCRS (SV) FILE

T
1]
W)
Q
1]
ia |

- s O D -y D " D ws - En - wm G - - -y . - - -

Elank i
1
......................... | mmmmcenr—————
Name of i
]
Vector 1 '
]
......................... !
LCimension of Vector 1 '
[}
......................... ,
v | Entry 1
E H
C H
T i
C i
R :
H
H
1]
i

Figure 4-26 The Saved Vector File

Portzble CLFARS Filinz Structure -- 4
TEE SAVEL VECTCRE (&V) FILE

cperzticn, which has been chosen tc to be 50 fcr the FLP-11
under EREX-11H. lience, vectors in excess measurement rmcde

be stcred in SV.

hhien a vector is deleted from the EV file, the 1

M)

mcved up so that no "hcles" zppear in this rile.

Tr.e ccmmand VECTCR is used tc manipulate the £V file.

has five options:

1. Lelete z saved vector.

st entry Is

systems

mey rct

VECTICE

2. Mzke a line printer listirg of z2ll saved vectors

including neme, length and the components of the

vector.

3. UDisplay at the screen the informsticn in 2.

4., PDisplay at the screen one named vector,

5. Save a user-supplied vector or the projection

vector(s) used in 2 one or two space projecticr.

PIEI H

Fortzble CLFARE Filirg Structure -- &L
TEE SAVEL TRALSFCRMATICL MATRIX (SK) BILE

4.1C TERE SAVED TEALSFCRMATICL MATRIX (Sh, FILL

Under CLPARS, it 1s pcssible tc 58Ve a measurenent

transformation for use on other data sets (see the MEALLFRE

™

command). This option is us=ful for tike follewirg reascon. If
legic is desigrned on z transicrmed tree, and if ¢ test cate set is
run through that logic, the test dete set shculc be first
transfermed in the same way as the cesign set. “hen tkre
trensformation informastion is stored away it can te easily "gpulled

out" znd used on the test dats set.

The <transformeticn information 1s saved in the Saved
Trznsfermation Matrix (SM) File. After such commands as EIGUXFLM
¢r NLCRMXFRM have completed their transformation, the programs will
ask the wuser if (s)he wishes tc save the transformaticn matrix.
(The EIGHXFERM transformetion is saved &s an (NLIM)x{(k) metrix,
where 'k' 1is the number c¢f eigenvalues chosen by the user; the
WORMXFRM transformation is saved as an (NLCIM)x1 metrix or vector).
If the user answvers yes, these routines will save the matrix in the
SH file. The user can then use the saved matrix te ransform
another date set. Tne command that will accomplish this is called
MATXFRN. It will prompt the user for the name of & saved matrix
and then transform the current data set using the meirix (assuming
that there is dimensional compatibility). The name of a matrix
must be from one to eight characters in length, the first being

alphebetic and the rest alphanumeric.

fortzble CLPAKS Filirg Structure --
TRE SAVEL TRALCFCENLATICL METRIXN (Cw) FILE
lre zculticnel ccemmend, ATRIY, iz recessery for Tiie
meintenzrce c¢i the & file. wATRIX nes tre felleuing cpoions:
z. Lelete z szvec rairix;
t. zke & lire printer listing of the neme, type,
dirmensicn, end entries cf & seaved metrix;
c. [Cisplay et the screen the neme tyce, dimersicn,

eand entries of s saved matrix;

d. Lisrlsy &t the screer the names, tyres, and
dimensions cf z11 sasved metrices;

€. Save a user suprlied metrix.

when a matrix is cdeleted, entry spaces =zre 1left in the £

-

file. In this case, element 2 cf the SM file heacer will point tc
the first free entry and the rest of the free entry arezs will ©be
lirked. The last free entry crea will always cccur &after the lest
filled ertry, anc is pointed to by element 2 cf the St file header.
The structure of tiie header of the Sl file is pictured in Figure
L-c7. WMANNTE steands for the maximum number of saved matrices tre

4ser mecy have. FAXMTR set equal to 1C should be mcre than

sufficient.

An entry in the =M file (Figure 4-28) will be the length cf
the maximum feature vector sllowed in CLPARS, withcut going into
excess measurement mode (which is ©&C fer the FLCP-11/7C under
ESX-11M) ©[plus one to allow for a link pointer. For LCRMXFEKYN, one
entry will suffice to store the (KLCIM)x1 transformetion matrix.
For CEIGLXFRM, the transformaticn matrix will be stcred irn as many

entries as necessary.

¢1

K

.

Fortable CLPARS Filing Structure -- 4
THE SAVEL TRALSFCRMATICMN MATKIX (SM) FILE

L
ﬂ 1
Element
1 i Kumber c¢f Saved }latrices ;
e ettt e L P i
2 i Pointer to the Eead c¢f the !
H Entry Free List :
T PP | :
2 ! Pcinter to the End of the : 3
! Entry Free List i i
[} t
[Bdhatah bttt et d itk bdedndasd b 1
u ! Number of Vectors in File H
¥]
----------------- [Ttk ade st d bt adde sk dhadn el i bt d o de it S B
5 i o |
through | lame of Saved Matrix "1v 1
12 ! '
Descrip- ettt i
tion of 13 \ Type ¥ ' i
Matrix "1iv N S R !
14 ! NDIM i ‘
e et d ~
15 ! Entry # of start of Matrix ¥*#* !
_________________ l______________--_____-______-____I
X '
t .]
[] ']
! . !
------------------ [et adeaiadadd ittt bl de kS ke deak el it |
i\ Name of Saved Matrix "MAXMTR"Y H
“escrip- e H
tion of ! Type i
Matrix MAXMTR e e T 1

44 (11*MAXMTR) | Entry No. of EBeginning of Matrix|

* NORMXFRM
EIGNXFRM

nwan
[}
—_

R, where k is the no.
of eigenvalues used.

*#% 0 implies not in use

Figure 4-27 The Saved %ransformation
Matrix File Header

92

Portable CLPAES Filing Structure -- U4
THE SAVEL TRALSFCRMATICL MATRIX (EN) FILE o

Element é

--- 4

1 ! Lirk Fointer to lLext Vector in Matrix ¥ ! 3

ittt C L L P T P T i ‘

2 : i :

: : 1

thru : V E C T C R ; i
; f

LCIM+1 | % 1

. -, S G S T G D G W R Y R D S D WL Em S S NS G G D D W W G e

* 0 implies last vector (row) of matrix

Figure 4-28 The Saved Transformation
Matrix File Entry

33

5.C IHTRCLDUCTICK

There are six types of displays that CLPARKSE can produce:
two-space cluster plots, two-spzce scatter plots, rank crcer
displeys, confusion metrices, one-space macro plots, and one-space
micro rlots. Since the informaticn to create esch of these types
of displays is so different, the structure of the display files
will bte discussed individually by type of displsy. However, each
type uses (st least) two files: the Cisplay Infcrmation (DI) file
and the [isplay Value (LPV) file. The [I file will centain
necessary ccntrolling information and pointers into the L[V file,
and the L[V file will contain veslues to be displazyed. 1In general,
the values to te displeayed are szved so that the process of
redisplay (that is, recreating the lazst display on the terminzl) is
a simple one, a&and display menipulations (e.g., elimination or
addition of a <c¢lass on a two-space display) does nct require a

complete regeneration of the displzy.

.

vy

PN

E‘..—-.-‘...,._._._. e e
! o
i

The first elerment irn the LI file will always Lte & cdispley ccce

not set

[@0]
n

1 = twe-sSpece cluster

two-space scatter

n
n

= rank order

YA
[}

= confusion matrix

crne=-space nacro

[e)} (S2] =
1}

= cne-space nmicro

5.1 TWC-SPACE CISPLAYS (SCATTER AKD CLUSTER)

A two-space scatter plot is a two-aimensional representzation
cf &an n-space vector, with eaclk vector located at its "naturel"®

projection point on the screen.

A two-space cluster plot is a two-dimensional representzaticn
cf an n-space vector, with each vector "forced” into & location
within a grid. If one c¢r mcre vectors from & single <data cless
fall within the same grid location, the displzy symbol for that
class is presented. If vectors from two or meore data classes fzll

within a single grid location, an asterisk is displayed.

The actual presentation of the two-space cluster display 1is
generally faster than the two-space scatter displey, especially for
a large data set. However, since each <character displayed may

regresent one or more vectors, in some cases this display cculd be

B e A L A W st

Cispleys

_-“-“.'--’E!!!!!!!"'ﬂ'-ﬂﬂnnur‘* -

=

-—

TWC-SFACE DISFLAYS (SCATTER ANL CLUSTER)

mislezgld

5.1.1 7T

ng.

{tE CISPLAY INFCORKATICL (DI) FILE -

The display file set up for twc-space displays &llcws ths

CLFARS
view an

DI file

applicaticns programs to efficiently create 2z rew disgleay,
©ld displey, or change the scele c¢f two-sSpace plcts. The

header (see Figure 5-1) contezins the fcllowing irnformaticn.

The display ccde (element 1).

A code (element 2) for the type of coordinzte prcjectiorn
used: L1, L2, S1, 82 versicns cf ASLCG, CRLCV, EIGV, FESUF;
or HNLM.

The treenzme, nodename pair (elements 2 through 14) that
makes up the (current) data set for which the twc-~space

plot was made.

The dimension of the data set (element 15) and the

number of lowest ncdes in that data set (element 1€).

The number of bouncsaries is in element 17. There is a

naximum of z boundaries on any one cr twc-space plcet.

Elements 1§ and 1% enable CLPARS progrems to access the

boundary points (and 2-space convex pecint) c¢f the first

96

BRI

;
i
3
-
|

s

P R o T

! e YV S S
1 A v g
-~ - ¢
_____ ,
1
i
_____________ ,
1
I
:
i] B A" -~ PP
; e ———— ootz :
- 1 AR P N |
1T Lunmber bcundarics ;
[}
e emmmccemm—mmemm———— e ————————
- * N Y 1 -~ - .
1.0 U2, of points in 1st boundary |
3 N B S~ - 3 - | > 2 [
17 First Ccundery pointer i Poirts to {(x,y) cocr
! - - o~ PRI . TN A
¢ of the peundery in T
1 EER PN
e e — e — e ————— ool
-~ hs - . - > ‘ IS vy - . 1
25 do. of zoints in Znc¢ ccundery |
1
et ——————|
9 N - ‘ I’ -~ 3 !
21 Zacond toundery pointe :
]
e e e
! 2 ; C e g - !
22223 Srig. ((nind, x(meax) i
z > Loy N 1
L=z y(".g .), Vvineks |
. e et tmcc——m———— ;
25=-27 Currant (e.in), x(nmax)
AT~ A~ v -~
2t-2¢ y(min), y(mzx)
e e m e m————————————
- . 3 ,
:2 st prci. vect. number {pir.)
e e e
- . -
21 2nd prcj. vect., number (ptr.)
e Y RN, Faal
SE=2% L2GIC LAME

Logic liode liumker
Total liumber of Vectoers

- - —— > D - e G W R

Jumter of Eins (D)

Type of Scaling

(1-space) (2~-space)
probability rectanguler
counts square

- — - - D - N h - -

(&
toun

Zoom Flaz (G = not zoomed)
(1 = zoomed)

Intensity Fleg

[}
1
H
3
'
1
1
[}
t
]
[}
t
1
3
1]
]
'
I
t
|
]
i
|
]
|
'
!
i
}
L]
i
1
t
)
|
1
|
e cemeccemmcmermmeemem——m——————
]
!
[}
]
]
1
t
|
)
{
1
\
1
}
\
1
1]
1
I
|
)
i
1
|
]
]
]
[}
!
|
L)
}
'
[}

(for one-sgpace micro cnly)

- - - - o = - - - = - - - - - - - - Eecen in

Figurs 5-1 Tne Displey Information File lecader
for Tne-Space and Tuou-Space

or

)

TS —

Py

tisplzys -~ &
TLClraCE [DIZFLAYY (SCATTER ALL CLUSTER)

Fcuncery irn the LV file, (The ceonvex reint ic feourc
in tre entry irmediestely fcllowing the last point ¢f
eacn beuncary. The nrumber cf pointes ir ¢ teurndery

(elerments 10, 16) does not incluce tlle ccnvex pecint).
’ E

¢ Clements ZC and &1 provide the same irfcrmetion fer thre
seccnd tourndary, s do elements 1 end 1¢ for the first

toundary.

¢ Elements <Z2Z <cinrough 25 contain the mirimum and maximun

X, y values fcr the projected vectors.

Elements &€ through £6¢ ccntein the minimum and maxinum

O

values that =zare wused tc creaste the tuwo-space plct.
These velues are initiaslly the same as those in elements
22 through 25. Wwhen &z scale change is nmade bty the user,
using the command SCALZM (scale zoom), the screern
coordinates that specify the new scale ar= transfcraed
into the coordinate system cof the projection vectors, .
and are stored as the current nminimum and maxinum

velues. Vectors that lie cutside of this new regicn are

not displeyed on the screen.

¢ Elements 2C znd 31 contain pointers to the projection

vectors (in the PROJECTICN VECTCE file) used,

5 RIP

Liggleys =
o~ Ia ~ . - - e . T Ay IR RY et
=S TAaCl JIorLans (CCATTER AL LLUCh

clements i inrcuon LU cre used Irn tine LCZIC Ccne-Spete

{(L31) arc twe=space (LZ) grcjection rcutines. They sicre

tcoel number ¢f vecicrs irn the

o
O
3
ct
[
b
o
0
(o
—
)

dzta set. It is used in cdetermining whether tc grcduce
2 scatter c¢cr cluster plot. If it is lerger thean 5CC, &
cluster plct is prcducec. If it is ECC cor less, &

scetter cplot 1s produced. This ¢efzult velue of &(C{

mey Le changec Ly the user (see the commend CLEFAULT).
Elements LZ and 45 zre for one-spece disgleys only &arnd

are ignored in the twc-space case.

Element U3 cdetermines the type of scealing to te usec for

& two-cspace displey, eithker square c¢r rectarnguler.

Square scaling is the defsault and may be changed Lty the
the user (see the command CSCALE).

Element 44 1is the =zocom flzg for one cr twc space
displays and when set, indicates zcoming is in effect
(i.e., the scaele has been

display modified tc cet =

"closer™ lcck at classes found orn the cisplay).

-

P
ot

Y A -

ays
SFLCE LDISFLAYS (SCATTCR ALL CLUSTER)

Fcr esch clecss (lcuwest nocde in the datz set) there is ¢

icgicel entry in the LI file (see Figure 5-=2).

£
)

11 vecticrs frem & cless will Ee stored irn the LV file 1in
seguerce, Therefore, elements £ &end € c¢f the lczical erntry fer
thhet ciess will give &sccess tc ell c¢f <the r[projected vectors.
(Element < zctuezlily points to trhe projecticn of the mean vector cof
the class.) Element 7 indicates whether or not the vectors frcm the
class should be displayed cor the screer. This element is initisily
"cr" aznd cen te reset by using the ccmmend SELECT. The disgplay
fleg symktcl {elemernt) cppears next to the <c¢less symbol c¢f
"clesses-cisplayed-znd-currently selectecd" list of the one or <twc
space displey. (Currently, this symtol 1is cnly impertent with
displays using the Fisher discriminant plene. All projecticn
subroutines (e.g. CSPRCJ, LCPRCJ) initielly make this symtol &

'*blank.')

A

-~ e - A e e se s m e N M e e e T e I

~ -

T.z.ent

(A9

()

e s G e WP AR G m A A S AR WD G AR MR P W A R wn G T A e

numter of vectors in the cleass

- - . Y - WR ME W e e e e G G e D WD W Y D M e e e v

) sinter to prcjectcd vectors in TV
7 Display fleg (1 means displzy class |
¢ weans dorn't sicw 1) |
t
e ——— e |
o Zisplay Flag Symtel !

; |
E Figure 5-2 The CI File Logicel Entry for Tuce-Ipace Lispleays é
!

by

i

-
L1

The general structure of the [V file Icr a date set with '

lcwest nodes 1s pictured in Tigure £=3.

~ s

Tiie LV file hecder (see Figure ©5-4; 1s just fcur elements

'

lorng. The first twe elements ccntzin informeticn for the purtose
cf crcss checking the L[V file with the [I file. The third element

ircicates whether c¢r nct screen ccordinates heve been ccmputed.

)

s fle will be wused 1in situaticrns where vecters must be

e
[\
(]

redispleyed but the screen coordinates have zlreasdy teen ccmputed
(e.g., the ccmmancds SELECT, RLDISFLAY). Elemert 4 points to the

next zvaileble entry at the end of the file.

The projectec vectors from a cata class are stored tcgether in
g blcck 1ir the <[V file (Figure 5~3). The first vectcr in each

ticck is alwzys the projection of the mean vector c¢f the class.

[y

Fer structure =znalysis displays, the mean vector of & class is
stored in the TI file and is projected and 1inserted intc <the LV
file btefore the rest of the vecters from that class are projected
and stored. For logic design displays, the prcjected mezn vector
may have to be computed after the rest cf the vectors from a cless

(or part of a class) are projected.

In either situation, the mean vectors will not be initielly
displayed on the terminal screen. If users wish to see thre
projected mean vectors (for the classes that are beling displayeg)

superimposed c¢n the screen, they should invoke the command FRCJiL.

102

Displays

0
(¢}
€3
[$))

(D]
]
0
1 [} t] 1 1] [} =
1 [} 1 L}] | 1]
] i 1 [} [}] ! [} o]
1 [} [} [} ! { ! 1 [&4
~~ 1 | ' t ! 1 ! [} ©

(4 ! ! 1 1] |)]

{1 i 1] t L}] \ | t

[t { 4] [} 1]] (Y]

t) 1 1 [} 1 | 1w - | 0 [QVI | c

i 1] i !] 1 t ! (& (R

.-1 1 [}]]] | I & - < > [

[} | I o] e] [} o [} $.) A . ! } 9% -

f 1 e} ! [} [} [} o] 1 o [3 Be} S} (o]

['] 5.] [] LA | <. [TR & T N © M & A | [

Dl 1 1 o Ga [I) (] } [B G [} fol | jol |

. t 1 @ 1w [} 1 o 1 > 30> o 2 | W

1 P) - | i v [QVIN | t » 0 Mo os. [20 N [OTNN | —

1 <. 1t O | & i O £, ! o | [S O 1. QO) -

[IS I I o) O 200] QO n 1 1 o O v |0 [e ®]] [

[IS I M | + vy Lot + U | | B 4> n 1o LR N - £ 1

[BT B B) @] g O (¢} M I O Q © 13 o1 3 (ol | fond
- [T 9} SRS w e [IS © ~ 1 O . b O | S €3

[=t n, - [2 4 W ~ (&2 | I o, s [I RS G} G)

r) 1 \ t [}) [}] 1 o

~ H i] t !] 1 ! K

—— e - - - o e . m e = - = e A ——— - . e e e e o —— T e > e - - T

)

Nl] !

.] 1 ™

] —] |
] ¢}] (g
t j o]
1} (o]) (V)
) ol] [
[} 3 [} >3
I (&N f)
1 « ! e
1,

Zlarmont
A
1 i Cisplaoy Code '
]] u
& e mm—mmmm—e—m ————— ;
2 i CLP.LRZ Cption lumber ')
e e ecmcmmmm e cmmm————— | E
3 \ i QOs=scresen ccerdinates
i ! rot ccaputed 4
\ Screzn Coorcinate Fleg f 3
| ! 1=screen ccordincies .
i ' conputad L
 eemmcccccccmccccramce—a————] .
4 i dext Available Entry |]

~

Figure 5-4 The LV File Header for (ne-3pace '
and Two-Spacz Displays

I
ct
oyl

PrloMl w1ll cdispley the mean vecteres cn the existirn cisplay Wi
v i

srcil rectangles eround the apprepriete cless symtel

+
IS

cr
o
)

A LV file lcgicel entry (see Figure ©5-£) ccnteins ell
necesscry information sbcut a projected vector or & bcundery point.
The IL of 2 mean vectcr is a negetive one (~1) erd the I o¢of =

bcunder voint is zerc (C). Screen coordinates are discussed in
2./

Section 5.1.4.

When storing boundary infermetion, the actuasl boundary rpcints
will be stored first (there c¢an be at mest six suchk points),
fcllowed ty the point on the "convex side" of the boundeary. The «x
ard Yy coordinates of the boundary points will be computed by

CRAWENLLZY as they are entered by the user,

£.1.3 TLE PRCJECTICL VECTICR (PV) FILE -

There is one other file that will be necessary fcr tre
efficient <cisplay of ¢two space plots. This is the Frojection
Vector (PV) File. It contains the n-dimensicnel vectors c¢n which
the dats set 1is projected. Each entry is cf length LLCIM and
conteins & projection vector. In addition, eigenvectcrs (and
eigenvalues) that have not been chosen by the user, are saved in
this file. If the user wishes to reproject on a different set of
eigenvectors, fcr example, they are immediately &svaileble for use.

The structure cf the FV file is pictured 1in Figure 5-6. letice

that the vectors actually used in the projection are pointed tc in

105

)
)
1
|
f
|
]
|
|
)
1
!
1
. t
i
t
!
|
)
|
|
I
|
}
|
|
)

te

RS

cocrdinate

o - = A - - - v - -

(S8]

S

<+

screen

coordin

(9]

-

hd

- - —— e . - - . — - - - -
-
i
P R R R R
y

.
1
1
I
)
]
1
]

J

pace Lispleys

ile Logical Entry

5
i
o

S

o
R

'V

n
™
or Tuo-

The
Fal
&

-5

Figure 5

100

<
v

i.2ager <

OCh

Pointer tc 153t projection vector

Pointer tc 2nc¢ prolecticn vector

1
|
1
i
!
[}
c—————— et e mmmmmcmmmmmecm———————————— ,
1
i
[}
1
]
1
t

eesureament vector

- — - W T - A A D S wm . e SR G W . e = - e -

e e
First Vectcer

) o
] :
1 S
]

1

'

!

1 <
1

1

i

]

1

]

1

]

1

]

1

]

1

1
SRRy USRS S U SO S5 -
!

1

!

1

] " e
{ N
t

l

I

i

t

l

1

1

[}

)

I

1

Incry 2 Second Vector i
]

e e R

1

1

aitinsslhai

Zntry X+1 xth vector

Zigenvalues (cnly for ..CIGV or
..5UDV commands)

Entry n+2

-n
'a
[y
«
-3
[$3
ul
]
(o))
-3

re PV file for One and Two-3pace LCisplays

O] o e - - - et i e

Lispleys == ¢
TWC-SFACE DISFLAYS (SECALTER ALL CLUCTER]

clements 17 end 1£ cof this file., T7These vectcrs zre zlsc refearencec
in elements =0 &ena 31 c¢f the LI file heacer. Fcr ccordirate
prrejecticns, the FV file ceontains an iagcntity matrix., For the LZLC

and rCUF ccmmends this file cornteins cnly cne er twe vectors.

FCRTRAL COLPARS allcws users tc cdelete specific measurnments irn
rcst structure gnalysis or logic desigr zrojections. Lny
measurements that are cdeleted from suchh a projection are kKept treack
cf 1in the FV file s follows. The number of measurements usec in
the computation is szved in element 15, The first entry c¢f the FV
file contains a measurement vector (cf length NLCIMN) whichk is a ,
vector of zerces and ones. . cne cceurs if the mesasurement is used
in the computation; ctherwise, & =zero 1is placed 1in that
ccorcdinate. For the eigenvalue options, the number ¢f eigenvelues

eguals the numbter of measurements used.

The projection vectors stored in the FV file also have length
NLIM. This results from placing zeroes in the deleted coordinate

positions of the projection vectors.

: 108

s = e S r————————

5
TwC=CFACE ZISEFLAYS (SCaATTER AL
Cereen (cordinegtes -

Tr.e set ¢f x anc y "ccordinetes", founc irn the IV file logicel
entry (see Figure 5-£) fcr esch vector, is the projecticn peint of
the vecter onto tie rlane c¢f the projection vecters, This set c¢f
ccerdinztes remeins fixed as lceng &5 the projection vecters remein
fixed. The set cf x and ¥y Yscreen cocrdinztes" 1is the systenm
Qerendent screern pdsition of trhe point. The "screen coordinates"
derenc on which calculated two space cption 1is used, cluster cr

scatter.

A hypothetical screen for CLPAKS with & rectengular two-speace

displey area is pictured in Figure 5-7. It is assumed that:

a. The ccordinates start &t (0,C) ir the lower left

corner of the screen.

b. Each character is represented in z rectangle hc
units by ke units and is displayed by specifyirg

coordinstes for its lower left corner.

1C9

I aY3 =~
R S SR UL AN W TR N Coaem e s e Ay
PRI O G S O G S N SR N Tt e e e et e b e b g
! (Us,is)
: :
| i
1 H
) [l
] [}
] , N]
i (3,d) =====eee=- e m - ——m—m— (o, d) i
] 1 1 1
]] i i
]] 1 1
i 1 ! t
'] 1 1
1 i | i
] 1 1 i
\ i]
] [}] 1
[} i } i
! ! ¢ Ve !
i i - t Vet i
‘ Ha Be) 1 :
1}] t '
[} ! - |
' ' ! ! 1
t ! . i 1
]]] 1
] i |]
b]) |
{ 1 i I
1 L] ']
]]] l
1 t
! e m e ee e e m e ———— ¢
i (a,b) ‘~nd {c,b) \
] + "
1 \ .
]]
{ i
L]]
[} 3
1]
i |
1 1
1 ' r
{3,3) “S

“ws = number of displeay units in scrzern widceh _

Hs = number of display uaits in screen heigh

Wwd = numter ¢f display units in Zdisploy widtah = c-=z

dd = number of displey units in display height = c-U

xc = number of display units in character width

He = number of display units in chearacter height

(a,b), (c,b), (¢,d), and (z,d4) arc the screen ;

. ccerdinates of the display rectangle.
I
'
Figure 5-7 A nypothetical secreen
11¢C
“F - T

h ' w

rer

vectlcr are given by

Xs

s

Sceatter pict, the screen cccrainastes (Mg, VYs)

1

t

i X -« Xnmin

| memmme - {(nd ~ ZWe) + & + ac imin <= X <= Xmex
: I',;x)\

i

v C X < ¥Xpin or X > X
i

[}

)

i Y - Yrin

| ~=m—e-e- (Hd - Zlic) + b + lic Yrin <= Y <=z Yrex
y Ymex - Yrmin

]

]

i C Y < Ymin cr Y > ¥m
[}

]

where x,y are the pi1 :jected vealues of the vectcr zand
MAX = maximum (Xmax -~ Xmin, Ymax - Ynin)
when 'square' scaling is used and

MAX
MAX

(Xmax - ¥Xmin) for Xs
(Ymeax - Ymin) for Ys

when 'rectangular' scaling is used.

The "current values” of Xmin, Xmax, Ymin, Ymax (found in

LI file

velues feor display.

header) are used

The cealculation of (Xs, ¥s) is set up

display point never falls cn the display berder.

and Xs, Vs are interpreted as integer

st

O
-
)

nex !

the

SC a

spleys 3
T 0=8TACE LISFLAYS (UCATTLE &anb CLUCZTER)
;
Fcr cluster plots, & 3rid nust te superimpesed crn wihe (LFAES
clspley wincdow (see Figure S<0). W€ nCw interiret the screern
i ccerdinetes (Ws, Ys) cf s vecicr ¢c te +the ccll i which tre
rrcjectecd vector (x,v) lies. 1
XS znc ¥Ys ere given bty the fermulas:

]
1
1
]
| cmmemeee (1) + 1 Arin <=z X < Xmex
) YA
q ¥ 2 WaS
i

A = U L = Kmax
i
i
i C ¥ < Xmin cr X > Xmax 4
i 4

;

-
: Y AV 4
] max - - 3
| mmmmmeee (M) o+ 7 Yrin < Y <= Ymex
H MAX
)
[}

Ys = | o Y = Ymin i
'
i
¢! Y < Ymin ¢cr Y > Ymax]
t
t

Again, Xs, Ys are interpreted as integer velues. llote, for
both cluster and scatter displays, if Xs = 0 or Ys = C, it means ﬁ
that the point (Xs, Ys) fell outside of the region to be displeayed.

Such points ere not displayed.

L}

P P

e T e G R R Y

L 1 e i

rid

—~
-

)

"

izure

£ 9

SCL LISTLAYE (SCATTE: ALL CLUCTEL)

¢, M, anc . are &ll system dependent snc ere
determined by exfperimentaticn with the
paerticuler terminal. In corcder tc mexe much of

trie ccde that utilizes these ccnstents system

ircerendent, we cid the follcwing:

cc The «ccnstants resice in an CLPARS file
that can be easily updated by "systens® :

personnel.

cc Cne c¢f the functiors thet the HELCLP
ccmmand provides 1is to request the
terminel type from the user. HELCLP
will then plece the ccrrect ccnsteants
into the Ci file (see Secticn &,1) for

use by the disglay programs. This weay

the same CLPARS prcgrams can put up
dicplays on different size terminel

screens.

Appendix E shows &an example file containing screer ccordinates

for a Tektronix 4C51 terminsl.

TWC=-SFaCE LIZFLAYC (SCATTER

5.1.2 &Scaling In Twe=Spnace [isplioys -

The 'tyre c¢f scaling' fleg znd 'zocm' flez (elerments L3 znc Lw
hl

cr the twc-sgpece display infcrmetion file Thezder) ccnircl tie

scellng itounda c¢n the twc-sgece displey.

{
4

Initielly, &all twec=-space precjections nzve 'squere' scalirng.

< <

(W]

]

This nrmeans that the volue of the mezsurement units cn teth <he x
zna y &xes ere equal. when scale "zocring"™ (cttzining a clcse-up
view of a subsection c¢f the original display) cr a scazle ciange

cceurs, the scaling teccmes 'rectangulesr', that i the wvealue cf

(&}

tlie measurement units con the x and y zxes zare nc longer ecgual.,

5.1.€ OCrigirel &nc Current MNin-Mzx Cccrdinstes -

The 'originel' minimum and maximum coordinates a&are obtained
durirg 1initisl deste projecticn computations (Globzl Sczle). Sirnce
the 1initisl twc-space scaling is 'square’', the 'current!
coordinates are obtained by using the meximum range of the
'criginal' min-max coordinstes. Thus, the current min-mex
coordinates are readjusted original <coordinates. If the CSCALE
(charnge sczle) command is used immediately after &z two-spece data
projection, the display would use 'rectangular' scaling with the
current min-max coordinates equzl to the origirel min-max
coordinates. If the ECALZM (scale zoom) ccmmand is used to obtain
a display subsection, the current min-max coordirates reflect the
exect subsection requested by the user (zoom scsle). If the CSCALE

command is used after SCALZM, the maximum range of the current

115

Lisplays =-- 5
TLUC-CFACE CISFLAYS (SCATTEER ANL CLUSTER)

min-rmzx ccorcdinctes 1s used to reecjust these cocrciretes sc thet
tne type of scaling 1s 'squere'. ‘here returning the cicspley teck
c its gloteal scezle (SCALERET ccmmand), the 'scuere' sceling rarnge

is used egein fer the current nmin-mex ccorcinztes. Cee Figure 5-CA

e,
O
-
£
ct

atle summery of tine originel ard current mir-nex cocrcincte

S.c CHE-SFACE LDISFLAYS (MICRC ALD MACKC)

CLPAGRS can procduce two types of cne spece cispleys. hey &r

14}

referred to as "micro" and "mascrc" displezys. The cne-spece nmicro
displsy is a view of selected deta class histograms rresented 1in
symtolic format. Using tlie WTENSIFY command, selected cless
histograms can appear as bar graphs. The crie-space macrc display
is & view of selected dete clesses in a "stack histogream" fcrrmet.
Exezmples cf these types of uisplzys appear in the CLPARS VI User's

Manuel.

The display files for one-space displays esre very similar tc
those for two space displays. The [I file hezader, shcwn in Figure
5=1, is ideﬁtical to the twc speace case. Informetion 1like Ymin,
Ymex, number of pointz in a btoundary, that are only used in two
space displays, ere ignored. Element 42 <ccntains the numter of
bins wused in <the disrplay; element 43 is used tc determine the
verticsal scale for micro plots; element 45 shcws whether c¢r nct
any of the classes for a micrc-view display have bteen "intensified"

(micro-plots only).

11€

-

R I I N N - f s e L R i

P T T VS L R S S U O

-~ - - ’ s . - . ' [
N~ RIS . Pad b ~ - TR TR R s couTre

“iLO0T l _—— - VLo oiil SCuas LSLe L2 [CRORPEIS AN

< e 4 5= o s R 1 1 4 1
Orké.’.tla& aili=liC XL (. . i
~~ 3 PR . ' . 1
CCCrlnzies J ; i '
1] 1]
)) I
currens ..:.,1_ -y | i Ay~ . % ¢ ,..‘,1 rex '
o u cne i e | T _JVEoCd | ceal=TMeX .
Pk i G 4y e Vi e oY :
criinates i originels i oazto voiues |
- e o - = o o o - -
Ind -~ o, b 3 o A~ T I | - - Y A LI
220w Zeole (inizial scale type is 'reoctanzular's
. . - - -
sGquare re’2oenjuwi
s = o - e =t - > = - -~ -~
Orlzinas LLN=in&L nmin=-rex Van=nlEXL .
73 e - P - - s - - . . ¢
cogralinares G&La verue:s CET VELiUugs

current min-mex read justes*® 20%
ccordinates zzomed values dzts values

. o - - D am - - N -

*x
-3
W
i}
[

Cor
ool
[&)
cr
[
£

]
™
R
I
<
3
[#]
O
O
~
o
[
jo
QO
o
w
-
[+{]
o]

33
[¢
o
[¢/]
m
.

Figure 5-~da Criginal and Current Min-=rax Coordinate Ztat:s

srcwrn irn

leys 1is

The I file lecgiccl entry one <cpace disp

Figure 65«C, The intensity flag 1s used tc determirce whether
~ W
niistcgrems srould Le crawn on cre sresce micrc cispleys. rfer cach

-
(e
T
(B}
',-l
O

,
[N
(@)
™
«x
o]
ct
-~

e
e

cless in &z data set or logic ncoce, tiere will

the I file. The histogrem informztion feor =zach class is stcred ir

iy

the scratch 1 (S1) file &arnd can be accessec via the bin 2cunt

pcinter of the 1l1-spzce lcgical entry.

The LV file fcr cne space displeys hes the sene hezder zs fer
twc space displays (see Figure 5<4), and a lcgicel entry, cne fer
each projected vector c¢r boundary point, &s pictured in Figure
5-1C. In order to cefine the "screern ccordineate™ cf z vector in =z
one speace display, let LLE be the numkter cf bins fcr the displey.

Then, LLL is givern bty the equation N

total # c¢f vectors

HE = Min(e-o-cme-mcmcmecamcmcmcmeccmeoocoe-e- , NE),

cof classes)(cne-space bin factor)

where Mb is the meaximum number of bins &llcwed on a one scace
display. The one space bin factor has the cefsult value of £, as
in MCCS, but can te changed by the user executing the comnmand

CLEFAULT (this bin factor is stored in the CM file).

11¢€

nuncer of vectors in cless

»

- - D R S A . = -

>
T s
1
B
N T I SN V)
e mm - ————————— e ——————— = j
)
I !
. - X
- “]
4 ' r
[1 -4
~ \ .r |
o F3Y) t
Q - [}
) a 1
- -~ e 1
. S i
-~ ~ + [}
il t
e !
- |
1
e e e e m e e m e — - ———————— —————
!
!
1
H
™ty 1
I .
o - o o > = - = A 4 s A - > o = o . = o = = = - - — :)
~ 3 h I fad ~ [- N - ~ 3 T vy -
; Sispley flezg {7 means cispley class
~ - o ‘ 1 .2 e N
C wmeans don't show it
. e - —————————_——— = —— e rm——m————]
T K T A hoolh B L
< D;Splay r.al ..«y'ﬂbCl

Intensify flag (1 weans intensify

1

]

]

t

'

1

i

I

!

i

L]

|

]

]

1

¢

t

i

v i Ptr. tc orcjected vectors in TV

i

i

1

H

1

]

t

[}

i

|

i

! C mcans don't do 1i%)
|
]
i

12 tr. to ¢in ccunts in 31

D wn - En e G R e . =y G . D A e - G ——

Figure 5-6 The C e Logical Entry

1 Fil
for Cne-~Space Zispl avs

(-}
o3
cr
-
)

& bouancery point

e e r s e
nmean VEeECTLCr

0 if
-1 if
X coordinate

X sScreen coordinate

a9

Figure 5-10 The DV File Logical Entry ’
for Cne-Space Displays

.......... (LE; + 1 if Xpin <= X < Xmex

Xscreen = ILE if ¥ = Xmex,
C if X < Xmin or X > Xnax

where the current values of imir and Xmax are used, enc ¥screen s
interpreted as an integer. Xscreen is the btin numter in which the

projected vector lies.

The FV file for one space is the same as for two space (see

Figure £-0), except that element 18 is ignocred.

th

Cne space disprlays use c¢ne additional file; the S1 (Scretch
1) file. For each «class in the data set or logic node, &1 will
contzin the number of vectors (from <that class) in each bin.

Storirng this additionel information will require less ccmputeticns

in ortions like RELCISFLAY and SELECT.

The S1 file header (see Figure 5-11) contains informeticn thet
enables programs to decide whether or not the S1 file contains the
cocrrect data. The S1 header zslso contains the meximum bin count
(over all <cleasses) which is used in determinirng the length of the
bars in the one space macrc display. The length of & logical entry

[)

in S1 will be the maximum number of bins allowed. There is cne

121

A

— - PR R=STA PSS -

-,

Lisplays -- 5

CLE-SFACL LICFLAYZ (L ICRC ALL MACRC)

—

cgicel entry fcor each class and this entry 1s pointea tec bV
element & «c¢f the LI file entry for that class., Figure £-1Z chows

the fcrmat of the S1 logical entry for one-space aispleys.

5.2.1 Screen rarameters ror Cne Spzce Lisplays -

The fcllowing set of system cderendent screen pareameters, thet
will bte @accessible to CLPARS in the way described in Cecticrn
£.1.U4., are necessary for one-spesce cisplays (see Figure 5-13),

(e,f) - The screen coordirates of the disglay line cf
(g,1) the first cless displayed. (Clzsses =ere

displayed from the tottom, upwards).

Ls < The distance tetween successive displey lines.

NC - The number of classes that can be displayed on
the screen at one time in a mzcro disblay. The
coordinates of the endpoints of the 1last
display line are the (e, £ + (LC - 1)Ds) and

(g, f + (NC - 1)Ds).

The heights of the bars in the one space macro display is
computed as follows. The bar representing the maximum bin ccunt is
tased on the value [s-6. All of the other bars are then sczaled
according tc this height. See the subprogram MACRCF for further

information.

3
NS
)
| I
[D]
-v - :
(AN)
I)
Lo v
") —
et (D .
Y M)
[-
bt [A]
N2 (4]
(]
8] v
4 Q.
o 78]
W t
‘/1 e
r o
Vi Uy UpHp oMy &)
O !) L]]]
| ! | 1 | -
1] 1 [} [}] O
] !] [[}] G
-] 1 | 1 |
a. 1 1 | 8 t | 1 1
£} | § W]]] 1 (2]
]]] £] t jd [} ol
[| | 3 |) 4 Rl t ©
LT] { 3]) ol |)}
[| | <] | 3 2] | =
! 1 ! v] (9] j]
I] [) [] Q O~ 1]
] @] Q] o t IS B OR | —
(o} § o] Q0] < oot Enl
| 8} § 12 1 [} el LN I | fv,
] O | b] G] Ke) V=]
1 I (@] ! (8] [} (=2 | —
] S | [} [} < CRIRD I | [%9]
1} (> } (%] [} | 8) 3 oW
1 - [} & [} =] £t —~ ['Y)
| 0. 1 . 1 £ [} rd crd =
] 4] [] n.] 0] e o 31 [
[e | 1 1 3 \ y PRSI |
[}) 1)] v] . ~]
1] |) 1 -
1] J \ [} —
U P QUG OGSy]
N
[i§]
42 }
[3
Ji r
< ~— [§\] (RN} H 4
3] {1,
e
3]

pleys -- o
JNEelTACT DICSPLAYS (UICRC LD TACRD)
Tilauent
' “ - ‘- 1
1 y canbsr of vectors in DiIno j
1 1
i I
R - . . - . '
z X vameer of vecteors 1a btin Z X
] 1
1 H
1 1
t . !
N ‘
[} . .
] '
] » 1
i '
i . |
] [
! . f
i '
i . 1
1 1
! . 1
! 1
1 1
- . - R P - ,
ub \ iuniter cf vectcors in tia 13 ; i
]]
] 1
.- | - '
034 i tlank t
| 1
i |
H 1
I . 1
1 1
] -]
] s
] - }
] !
] » i
t 1
1 |
o ! & R ! ~] ar e '
vax lo. <of btins ; nlank

. . A - — - - — - - - ———

¥ If probabilities are used instead of counts in 2
one-spece inicro dispgley, these probabilities are
computed by the prcogram MNICRTP but are not stored

in 31,

Figure 5-12 Tie S1 File Leogical Entry
for One-Space Displeys

M.

- - — - W . —— " ———————————

Figure 5-13 Cne-Space [Lis

k]
[
m

kel
o]

ramecers

SEZL I MEASURENELT EVALUATICH CCLMAL

¥
{r

S.> L[ISFLAY FILEC USELD I MEASUREMENT EVALUATICL CCLMALLES

The [Cisplay informaticon (LI) file zna tre Lispley Value (LV)
file, where usec with Meesurement tvelueticn Commands, heave fcrmeats
as cdescribed belcw. The gereral scheme Is similear tc «aisgley
hardlirnz for c¢ther CLPARS functionezl spplications irn that the L[V
file contains the besic, raw date computed by the wmejcr eanelytic

furcticrn (Liscriminant leasure or rrebebility cf Cerntusicn); trhre

LI file contains control informsticon &erd the fermetted cr
menipulated subset of the raw data, corganized fecr cdispley toc tre

user, as determined by the assccizsted subsidiary ccmmends.

In the cese of PRCECCNF, zn extra file, S1 (Scrateh 1), is

used (temporarily) to support computaticn of velues which

o
-
[#]

stored in the L[V file.

Formats for these files are given in the following figures:

Figure 5-14 Rank Crder [I Hezder

Figure 5=-15 Rank Order LCI Entry

Figure 5-16 Rank COrder LV File

Figure 5-17 Rank Crder S1 Header (PRCECCIHF Cnly)
Figure 5-1¢ Rank Crder £1 Entries (PRCECCNF Cnly)
Figure 5216 Rank Crder S1 Example (PRCECCKF Cnly)

——

ircices tc Lest class pair N eEe T I

e
LLImant
—————— e —— = e ——————— ——— e —————
] - - - .
' NDSCREIE S VRS SN B
e amem—————— e ————— ————m—— = ————
-~ [PR . - -~ - I~ -~
< 1 TreouLnlooaenTear STV C. .
e —————— e mm——— - emm— e ———— ————————|
i - i - - -)
o=) YLrrenT L3 sSel nals X
e eccmmemce————— cm—mm—— e m e —————— —————
e] - - - - !
o) iin = rnuwcer of meAasurenents ;
i mcmccemmeemamcemm—mm————————————— ————————
. 1 ~a - ~ o T = ~
o v neclzas - numtesr of clezsses |
e mccmeemce—c—————————— e e |
-~ ! < . 3]
) \ rank v.,t..-dt rumrcer :
e mmemecmecmmmm—mm—em—— e —————— ——————m !
“ e 3 3 o -~ o~ LoadP N SN ma . |
e o= 15 | ranx cpvicn paraingters (lee Tzbie Celow)
et mc e c— e a e~ ;e —————————— e —m————— -
) 1 . e N N ~ s -]
25 i Soru orzer flzas Js=descending |
] b S . N 1
\ p=sdceniing 1
. —mmm e e —— e —————————
T - 1 -~ - ~ 3 ad [}
= v 1 Criered 11580 £1 CLaSS i
o LR e i i i@yl o 3 ~h '
Tot anwbls ui1sSolay ciraraccoers !
Sy S —————————— e ———— ——————]
i & P 5 PN c + S 1 Fad t
+ 1asterisik flog/index to best ciess |+ fer
e T T T ~—=| meas.,|
H
H
L]
[

- - ——— . Y - WD A A 4B e - WA R D n e wm G S e Gn Wn e A S we e . =

) '
| i
jesterisk flag/index to best clzss (mees..
oy g no.
+2%2K4LI4 iirncdices to best class pair CEML T

T7re of Ranking Cption lio, Cption Parameters
(ele. 17) (elements 10 and 18)
w:l'v -‘ - 1 -
meas. oy cleass 2 cless symtol
mez3. by class gr. 3 ist class symbol,2nd cless syuibol
class by ineas. 4 meas. number
cizss pr. bty meszs. 5 meas. number

The asterisk flag 1is tie algebraic sign; (+) irncicates not s
asterisk o¢ff; (~) indicates set, asterisx on. Indices o b
class pair are packed (into one real element) by tae sch

CC#firsteclass incex + second class index. (Packing only wo
for ciass indices less than 3 decimal digits long.)

et
es

1

~

[¥] ’0 ctf -

€l
-
!

Figure 5-14 |

g8
o
=
=
(&
by
(o9
o]
1
(&
—
w
]
o]
o
-3

.

LN)
3
— N .
- N
.. LRV -
"y -~ Ga gloor [
e QO " S~
N -t ~~)
S FORS L - W
s O W [}
$3 O O L2 155
(€3] 43 g2 02 - (0
O w3 i)
e e —a o T3 w
] PO IEE I 7 0
] Gt [} ~
t “a [0} ¥ Q
[} (SRS B SRR [0 IR
| Q PEEE >
1) e (4 | | 88
1] 4 O 1O [I &4 KB
] [SPERGN o oerd =
i ey I} O Ga Ll
[} W [NS] o " w
] W 4 AV) —
] 30 G W our~s 0 &)
] W M @ e K w n
] DO U0 r W 4 - W@ [
1 B e el Q s, o) |3 Moy | o
] el Y 3 = © B o
! 3w X v O w ~ 1 9
1 (Sl R v owy G (@]
L] T W O > O co
[}) ST D $. = o~
42] ! = L [L and
[| (] 2 [ofikit] g
3]] a [} L L0 o
D | S0 n s £3
[t Bt Qe ~ 3
®) [} -~ M 2 w
(@) [} ~ P O W (@) Lot
| ~ —~ > 3 wed Q) |
} 2] 2] | SRR ~ un .G 8]
)) [ES} [\ O
1 « O <o v A (¥
]] 4 W O [J] 12} $.
1 3 3 L) emn @) [agith) 3
! S <2 Py 1Ty eed o 3
] ot o et 3 3 [e}] Nal
¥ ~o ~ [i S & N {r,
[™~ [J] > O O et D W
"3 5] S 2] $2 (ol &
14 2 U LN s W £
| S 19 3 2 K ORRTE I =3 €
1 - et > o 42 Dy W wos.
] ~- L (93 o~
] D - L W
! A - 0 <
B e e A4) [T |
Vil o [0 M &]
vy oW K] P
42 5. 5L 0O L.
J < B3] W W
. -) o ' e e W RS REC RS I &
o [UIRE: i3 @
St [SRS) o IR
] (SIS RSN M-S 4

QY]

~
L~ .
i N .
o o~ 1
] BN |
) ~r
(-
r ~ o~
) 9] — e U} XM
.t "n o« .- 4 V) W
LN ~ + 0] v 7] (G OB
- ' [| (8 [R] V)] ' n 1 v 1 |8 O 3 W
. 1 L.] 1 ! 1] I { { w [IRt I W 23 32 —
’ ' I [| P | IR NN \ = | | r T ed 0 —~ 42 (ol of rd
1 s | I | S. bt | . t | O t ot c: (¢} 20 0 [,
J [[T 4 [IFENG] 1 13] 1 s 1w verd ® Q O &
M | 3 Pt [| IR S] 91 t | + 1t + 1 < FRE U -
e 1 : Vi 1 [BEFS N [e))) 1oy 1 PRI xR 3
L] 1 1 1 | 1]] ! | <2 -0 3 -
£ " v O ERN N [>
-l e mmme e R mm e e o —mm e m - 3 3 (5}
M ! 1 1 1] e ! [29] - S. 4 Q© kel
. \) ey 1 (2RI] — | i @ aQ et Q52 | & ;
-7 1 | A T ~ | 1§ { 23] 2~ [44] (&} "
D ! o g 1o - | [QVINS| (SR (87 SN & .
D] | LK GUEN IEELL B A (B L~ vy] ~ vy 0N o0 ~4 ©y
¥ ! t 3 D o T3) i |9 1 1] o4 U3 Gi G <o o
)] [T A T — 1 e ~] e ay 1y /7] 5] -
it] b3~ ~ ~s 1 > } ~ L S . [SVI ol o
L) 1 | IO 2 BE-XI 4 EC T Lo 1 [CS QS B 1 C O
b ERA | b O e Vo) [QEFI RN . ! PRA n o Q e
) b -~ | BRI [. ! b n U 133 ()
[LI I U I T O o~ ~ t v . { ~ [I B M S. (J (@ —
) 1l on ! [A) (7 B) 1 — 0o [0 7 < &]
(D] e) I - < [B —~ 1 5. O [0} K& [e | L
- SN 1 1 [- T -— i [RINJ) Q) G [
1 ST BERSA | | [9] [S 2 BEPN ~ ! ko 2] n O DR] D
(DI | ! [I S L B e B ¢ e e = ! T v ri | S U [
1 2 t [R - - |]] W QO £ 4 el [$I<IR9] o
A [IS I | 1 I o= L B t 4222 1 U Gy n v on (%]
= H)) 1o 1 [—~] Qe o oo oed ol
[T B | | D) [IS 1%} 1 Gt Oy 4 SRS Rd) e,
o [T T B D 5 W} «] O O G [\
[| IEPER T BRI BN B B et L |] ! O FRRNS RS]
ry oLt il el - < [S TN TN (9} [} Koan ol QO [SR G o
oo [IS N T BT R 82 (SR B & t FR RS] | SR S & [N
R T B R N ~) s ~ ! H) YD (PR NS] £t
PR oy 1O vy)y [[T Y M L} SO MO R &) QW o
1 ' 1 ') 1 | Uy [SHE G & [S S &
L B e T e mm m e e e oo ~ e o 1. OO 3533
[[2]
r, = - = [0 IG]
= . o Vi) [WE IRV
Pa e - 4 bl = £ 4l .
[.
BT | e [I
P L, : t | 0 "3
g) -l L
b I : <0 Q)
(0 1) ==z =

QP
- iy B A S~ - AR KR T R N B R A BRI
PO R P VRS Lavee s st o O Vew e e -

~ - s -«

LAINTZEACS

o o = = e - o > o T = A = > o = = -~ - -~
-0
-2y CSoul (=2

- n W e mn - - D S e S G e T R S e W -

. . A v e oy ~ . ol
2Ll ocemuicnt oLL. o

o

.
e e e e e e e e e ——————————————
s € wmoassurenens (rdim
A e O LZasurenencs I
e e e e e ———————— e
e b h P ’ 1A
2. of c¢lasses (nclcs)
B e e o o o o e o o o e o
JRPE | . Fa | o o~ ie AR
tcszl no. of cells for each cless
e e e e o e e e e e e

Vi

GZ(1) ro. of nistogranm cells neas, 1

- - . S G e L TR A S e ae W W G YR NN L R WE e D e A S A e

JP{1) cffset ptr. for cell ¢rn:. meas, 1 =7

| B e v S S G S D e T M N W D e L e A M T N T Y e e MR WD AN R e R s e - e

(1) cell wicth weas., 1
TN nin. velwe T iezs. 1
TTIAY(Y mex. velwe reas. 1
ey T T
S S Y
Cciy T
S

HAX(2)

B e e e R R

HCQIDTN)
QP(IDIM) = UC(UDIM-1) + CPLIDIN-1)

CUQIDIM
MIN(HDTIN)
DA CIDIM)

»

Length of leader (HUE) = 54(53* ndim)*nclas

11

CP(3)+ lammmmee e S ————
NC(3 -1 icount for cell lC(§) class i, meas. j+1.
\ [}
emmmmm——— ————m—ee o ————————m ——mm e ———— !
CP(i+1) icount fer cell 1 clzss i, meas. j+1 :
' 1
'mcoceccccmcmm————— ————e———— e — e ————— '
OP(j+1)+ R e ey cmmemmem e e ——————
HC(i+1)-1 Jcount for cell NC(j+1) cless i, meas. j+1)
!]

Order of entries is: i

class 1 meas. 1
class 1 meas. 2

class 1 meas., ndim
class 2 meas. 1
class 2 meas. 2

class nclas. meas. ndim

Length of Entry (LENE) = 1 .

Figure 5-18 Rank Order S1 Zntry

131

DISPLAY FILZS USID I TEASURIMED
JEACE ENTRIES
Display code{=32) 1) cell 1, meas. 1 =
nédin(=3) 2) cell 2, meas. i
nclas(=4) 3) cell 3, meas. 1
total cells(=z13) 5) cell 1, uezs. 2
------------- 5) cell 2, meas. 2
HC(1)=3 5) cell 3, meas. 2
CP(1)=1 ... 7) cell 4, meas. Z
------------- 8) cell 1, meas. 3
NC(2)=4 9) cell 2, meas. 3
OF(2)=4 .. 10) cell 1, mess. 4
------------- 11) cell 2, meas. 4
dAC(3)=2 12) cell 2, meas. 4
CP(3)=3 13) cell 1, meas. 5
------------- 14) cell 2, meas. ©
NC(L8)=3 15) cell 3, meas. 5 =
CP(43)=10 ..
1€(5)=3 .
OP(5)=13 .

Figure 5-19 Example of Rank-order
offsets and pointers

132

Displzys -- 5

R R TN TAMT AN AT
'ENT EVALUATICH CCAMANCS !

1
1
[}
|
!
]
L]
]
!
1
1
i

> class 1

S1 file

Lisplays -- §
CCHFUSICY MATRICES

5.4 CCNFUSICN MATRICES

There are two types of confusion metrices that CLPARS ceén
produce; between-group and within-grcup. The between-group
cenfusion matrix (see Figure 5-20) 1is gererated when designing
logic using a cne-space or two-spsce group logic command,
partitioning the resultant data projecticn, and finally using
CREATLCG te¢ crezte the éroup-logic. Since it might be desirable to
redisplay the one or two-space projection z2nd the boundaries upon
which the logic might have been based, this type of confusion

matrix is not stored in the display files.

The within-group confusion matrix (see Figure 5-21) is
produced =2as a result of the design or applicaticn of a complete
within-group logic (closed decision boundary, Fisher, IMV), 2z lcgic
evaluatior on the design set, or a logic evaluation on a test set.
The information to create this confusion matrix is stored in the [I
file. The [l file structure for the within-group confusicn matrix

is described next.

N

b CCUFUSICH MATRIX (EBTwl. GRCUP LOGIC) DATEZ: 2z-dAl-c2 1Z:24:Z4

RECION LCGIC DISPLAY SYASCLS OF LOGIC NAXE- grains
NODE ASSOCIATED CLASSES
CCUVEX (1) 4 "
ccuve s (2 3 scor
ZXCESS > oz ‘
LOGIC 2ODES SUMS AND PERCENTAGES =
CLASS (PARENT) (CHILDREY) (CORRECT) (ERROR)
TAMES 1 3 3 2 COUNT PRCHT COUNT PRCNT
soy 42 0 42 9 42 100.0 0 0.0
corn 42 0 42 0 42 100.0 0 0.0 .
0ats 45 9 45 o 45 100.0 o 0.0 |
weat Uz 41 1 0 41 97.96 1 2.4 4
Clov 43 0 0 43 43 100.0 o 0.0
alfa 37 0 0 37 37 100.0 0 0.0 |
rye 52 0 42 0 82 100.0 C 0.0
TOTAL 263 41 172 20 252 9.7 1 0.3
CORRECT i1 171 80 .
(PRCNT) 100.0 99.4 109.0
TARORS 0 1 0
(PRCNT) 0.0 0.6 0.0

Figure 5-20 Between-Group Confusion Matrix
(not stored in a file)

134

~LTH EUCLI
LCCIC NAME
DESIGH DAT.
JIMENSIQIUA
ASS
soy
soy 15
corn 1
oats c
weat 0]
Clov 0
alfa 0]
rye C
TRUE
CLASS SOy
TCTL 16
CCPRR 19

PRCT 130.0

ERCR 0
PRCT 0.C
REJT 0
PRCT 0.0

TCTAL NUMBER

Cisplays -- 2
« “ATRICES

VECTCR EVALUA

~

«
[{u)
o]
c.,
(9}
v

OO OO~NO
n
- O0OO0OOCO0O
-—
QO OO OO
o HeloNoNe]
~1 O OO0 OO0
COOO0OOC OO

—3

-
~
(¢}

n -~

O o)
¢ aa

(Vo]

g
« a1
OQOM—o ==3n

O O~ =W
.

[oNeoNoNe

(@)

(@)
.

CF VECTCRSZ

OVERALL CCRRECT

CVERALL ERRCR

G3.80 PRCT
6.20 PRCT

CVERALL REJECT

0.CO PRCT

Figure 5-21 WJithin-Group Confusion Matrix

tisplays -- 5
CCNFUSICH MATRICES

The LI file header (see Figure 5-22) contains information
summarizing the 1logic evaluation, &s well as the names of the
assigned classes, i.e., those classes that reside > the 1lowest
logic nodes. The constant, Max, denotes the lergest number of dsta

classes that a logic tree may Lave, which is assumed to be 5C0.

For each true class, i.e., the data class being evaluated,
there is an entry in the LI file. It contzins the clezss name and
the informztion that appears under the name in the confusion matrix

display. See Figure 5-23.

The LV file is not used to create the cconfusion matrix disrley
at the screen. The LV file may be used at a later date to store
certain logic design error information that can be sent tc the
printer under the various line printer opticns. HhHowever, this is
presently accomplished by creating a temporary sequential file to

store such information.

Cisplays -~ ©
CCUFU3ICH sATRICE
Clement
1 i Display Ccce (=4) i
2] OLPARS option number :
1]
| T T T e TS e mne—- }
3 i !
thru i DESIGH DATA SET AME 1
14 f H
\]
| st ediesendidieb e it i
15 ' dumber of true classes)
18 i DI)
17 i dumber of vectors ' i
H]
[atatadadeshaddsfethe i o ittt]
12 5 L N 5
i o A |]
thru i G ¢ i }
) I £ i E
25 i C i
| == mmmmmmmmmm—mmmmm e : i
26 ' Logic node number -- i 1
i (0 means file was created | :
i thru an overall evaluation)| '
27 i Total number correct i
28 i Total number errors !
29 i Total numbter reject '
30 i Percent correct i
31 i Percent errors i
32 1 Percent reject !
33 i dumber of assigned clzsses |
34 i Logic type (-1 for overall |
E evaluation) i
R ittt '
35-3¢8 H Name of assigned class 1 |
36-42 ' dame of assigned class 2 H
g . i
) . :
i Name of last assigned class |
R ettt L E L L L L P P i
i Elank H
344U *Max : |

Figure 5-22 The DI File Header for
Confusion Matrix Cisplay

———
(W8]
-3

N

tumber of Vectors

] [}
[} i
|)
5) ! "Number Correct '
1]
[} i
7 i Jumbter Errors '
1]
)]
a \ Humber Reject !
\)
[} i
S i Percent Correct !
H)
] 1
10 i Percent Error ! :
!]
[} 1
11 i Percent Reject i
]
12 Jumber in first assigned class

L]
[}
|
i
i Number in second assigned class
: .
]
[} .
1
; !
[}
.] .
[}
]
11 + number |
' |
[}
1

of assigned
classes

lumber in last assigned class

11 + Max

Figure 5-23 The PI Logical Entry for
Confusion Matrix Displays

SECTICH €

TERMINAL ANL TEXT FILE INPUT/OUTPUT

6.C INTRCDUCTICN

The following sections describe the terminzl craracter 1/C
package, the terminal graphics I/0C package, and the text file 1I/0
rackage. The terminal character I/0 and the text file I/C peckages
were based on similar packages that can be found in the UNIX I/C
library. The graphics I/C package resembtles the FCRTRAN PLTMAP

routines.

6.1 CLPARS TERMINAL CHARACTER INPUT/OQUTPUT

The CLPARS programs use terminal input and output character
handling routines. [Lue to the nature cf the task required of these

routines, they should be considered system dependent.

The terminal input routine (TRMCET) obtains its information zs
a character string. It will perform a translation of these
characters to some internal representation, specified by & format
control string. The reason for having a terminsl input routine
translate the user input characters and not a FCRTRAN I/C package,
is that some FCRTRAN I/0 packages abort a program when the input
cannot be interpreted properly. This is totally unacceptable for

the CLPARS system. By having its own terminal input routine, an

136

— WD i"ﬁ -

’ Terminal and Text File Input/Cutput -- €
CLFARS TERMINAL ChHARACTER INPUT/CUTELUT

=
jo]
<
™m
[
.
Q

CLFPARS program can contrcl whet happens when it receives

input.

To be consistent and not rely on what a FCRTRAL 1/C peackcge
can handle, CLPARS progreams also wuse a terminsl output routine
(TRMPFUT)., This routine translates the internal representation of

data into a character representation, via a formet control string.

The following text explains in greater detail what a format
centrol string may contain, and how the terminal I/C routines will
function. Most of the format conversiorn characters coincide with
FCRTRAN's conversion characters. The specific actions taken during

& conversion process, however, may be slightly different.

Tc be able to format terminsl output, it is necessary to heve
complete and easy control over the terminal writing mechanism

(i.e., cursor, type ball and carriage, matrix printer head, etc.).

In this section, the writing mechanism will be known as

"cursor".

To control the cursor, a programmer needs to specify when it
should move down a line (line feed), or when it should move to the
right (tabs, spaces) cr left (backspaces, return). The feollowing
paragraphs specify a character rerpresentation of the cursor
control, that will be used in the terminal I/C format control

strings.

140

a6l end Text File Input/Cutput -- §
ARS TERMILAL CLALRACTEER INFUT/CUTEU

1

e

H

wi
LF

o3

-

€.1.1 CZpeciegl Cheracters within A& Formet Ccntrol String -

The ':' provides fcr writing tabs, rew lines, backspeces, lire
feeds, end carriesge returrs so thet they &are visible ¢tc¢ &
grcgrammer. The symbol ':' is Known &s an "escape character",

i.e., whatever character follows ':' is in some way specizl.

The previcusly mentionec special characters are represented as

follows.
H newline character, i.e. carriage return znd line feed
:Eln] backspace 'n' character positicns
'L line feed character
‘R carriage return chareacter
:T tab character (tab stops are pleced at eight character

intervals from beginning of line, i.e., 1, ¢, 17, €5 ...)

:F form feed character

To cbtain the escape .character in a string, '::' must be usec.
(liote, due to FCRTRAN conventions, the single quote character

cannot be "escarped".)

Other special character meanings:
:P[n] place line cursor to 'n'th character pcsition within the
current (buffer) line.

:X{n] input: skip over the next 'n' characters in the current
(buffer) line

output: transmit *'n' blanks to the current (buffer)

line. Note, if n is missing in either of the
above, 1 is assumed.

141

Terminal and Text File Input/Cutput - €
CLFARS TERMINAL CEHARACTER INPUT/CUTFLUT

licte, if the numeric ¢rqument is missing from the :E, :F, cr
X special characters, a value of 1 is assumed. 4Alsc, if the
rumeric argument of these specizl characters is &ar asterisk (¥),
the numeric value for the character is to be found in the zazrgumernt

1ist of the cheracter I/0 routine processing the format control

list.

Examples:

(In the fellowing examples, the symbeol '[]!
represents the final cursor position.)

- if format = 'HI, HCW ARE YOU?!
HI, HCW ARE YCU?[]
- if format = 'I AM FINE, THANK YCU.:N’
I AM FINE, THANK YOCU.
(]
- if format = 'WATCH THIS! A:LB:LC:L:BLC:RE’
WATCE THIS! A
B
C
E[] D
’if format = 'TEST:TTABBING:TMECHANISM:N!'

TEST___ TABBING_MECHANISM. (Note: ' ' is strictly e

{] place holder for spaces,
i.e., a space character
really should appear
where '_' does)

- if format = 'SPACE:XSEXAMPLE:X3WITH:X3POSITICNING. :PZ6RE:N'
SPACE___ EXAMPLE _ WITH REPOSITIONING.
(1]

142

Termiral and Text File Input/Cutput -- 6
CLPARS TERMINAL CEARACTER ILFUT/CUTELT

6.1.2 TRMFUT -

The calling sequence for TRMPUT is:

CALL TRMPUT (format-string, argl, args, «...)

TRMPUT is & terminal output subgprogram. It formats, converts,
and prints 1its arguments to a user's terminal, under control of =z
format string. The format string will contain three types of
objects: plain characters, which are simply copied to the
terminal; special characters, which are used for cursor control;
ancd conversion specifications, which are used for converting and

printing arguments which follow the format string.

Eacn conversicn specification found in the format string

begins with the character '$'. Following the '$' there may be:

- an optional plus or minus sign which specifies right
or left ad justment of the converted argument in the

indicated field.

- an optional digit string representing a field
repetition factor. If it is not present, it is

assumed to be 1.

143

.

r'

Terminal and Text File Input/Cutput -- 6
CLPARKS TERMINAL CEARACTER INPUT/CUTPUT

- a charccter which indicetes the type ¢f conversicn to

be applied.

- an optional digit string specifying s 'MINIMUK' field
width (i.e., the field to be printed mesy actuslly be

larger than specified, but it will not be smaller than

specified); if the converted argument has fewer

characters than the field width, it will be padded (on

left or right, depending on the field conversion type

and the field adjustment indicator) with blanks to

make up the field width. If the character '¥' is

placed in this position, the next argument in the list Lo
(the one that follows the argument to be printed) is

used to obtain the minimum field width.

- an optional period ('.') which serves to separate the

field width from the next digit string.

- an optional digit string (the precisiocn) which
specifies the number of digits to be printed to the
right of the decimal point of a single or double
precision number, or the maximum number of characters

to be printed from a character string. If the

character '#' is placed in this position, the next

argument in the list of arguments is used to obtain

the maximum field width.

144 f

g :
M.‘“iw‘

g iRl e {
’ LGl

V-

f

Terminal and Text File Input/Cutput -- 6
CLFARS TERMINAL CHAKACTER ILNPUT/CUTPUT

€) N = TRMCET('gAczC', S)
N = 1; S = "abed__efg_12jt"
9) N = TRMGET('$AgCsCsC*, S, T, U, V)

I 4; S = "zbed"; T = * ' U = ' "V = te?

(Note: 'C' conversion specifier suppresses space skipping)

The following example shows how the 'execution time' field width

¢an be used.

10) N = TRMGET('$A*$A*', S, 3, T, 5)

N =3; S = "abe"; T = "d__ef"

6.1.4 Some Notes Cn Terminal I/C -

Both TRMGET and TRMPUT are written in assembly 1leanguage.
TRMGET and TRMPUT are entry points into the routines FILGET and
FILPUT, respectively (see Section 6.3). Essentially, the terminal

I/0 routines can be thought of as special cases of FILGET arnd

FILPUT.

A call to TRMGET is equivalent to:
CALL FILGET (terminal LUN, format-string, argl ...)

A call to TRMPUT is equivalent to:

CALL FILPUT (terminal LUN, format-string, argl ...)

156

Terminal anc¢ Text File Input/Cutput -- ¢
CLPARS TERMINAL CLARACTER ILFUT/CUTFLUT

hote:

Lach character is represented by & singie element 1in zn
integer array. however, fc¢r convenience,the characters will bLe
édisplayed here as contiguous character strings, addressed via the
name c¢f the array. Also, there is an ECS symbol asttached to the
end of all the character strings enclosed in double Qquotes. when
the optional field width porticn cf the 'A' conversion
specificaticn is missing, the input field is a string of non-space
characters. All initial space characters are skipped over and the
input field is TERMINATELD BY A SPACE CEARACTER or a KEW LIMNE. If
the field width is specified, then any initial space characters are
skipped over, and the FIELD WIDIH or a NEW LINE TERMINATES the
input field.

2) N

TRMGET(*$2A3', S, T)
N =2; S = "abe", t = "d__"
3) N = TRMGET('¢/A $A5', S)
N =1; 8 = "efg_1"
4) N = TRMGET('$A %A ¢A', S5, T, U)
N = 3; S = "abed"; T = "efg"; U = "12j5"
5) N = TRMGET('$/A3 $A1 §$/2A2 $C', S, T)

N =2; S ="d"; T = '5' (no EOS; represented by single
quotes)

6) t = TRMGET('$/2A $A', S)
N =1; S = "235"
7) N

TRMGET(':X2$A :P$A :PE $A', S, T, U)
N =3; S ="d"; T = "abed"; U = "fg"

Terminal and Text File Input/Cutput -- €
CLPARS TERMINAL CLARACTER INPUT/CUTPUT
The conversion characters and their meanings are es

follows:

I - The argument (1 word long) is converted to z decimel
integer. If an adjustment indicator is nct present
in the conversion specification, the resulting cutput
character string will be right adjusted within its

field.

H - The argument is considered a half integer (1 byte

long) Default field adjustment is 'right'.

L - The argument is considered a long integer (2 words

long) Default field adjustment is 'right'.

C - The argument (1 word long) is printed out as an
octzal number. The resulting output string wil be
right adjusted in its ocutput field, when a

justification indicator is not present.

Y

oy

Terminal and Text File Irnput/Output -- 6
OLPARS TERMINAL CEARACTER INPUT/OUTPUT

The argument is taken to be a string cf characters.
The characters are stored in an integer array, one
character per integer. Characters from the string
are printed until an end of string character (0) is
reached, or until the number of characters,
indicated bty the precision, is exhausted. If zan

ad justment indicator is nct present in the
conversion specification, the resulting output
character string will be left justified in its

output field.

The argument is taken to be a character string. The
only difference between the 'S' and 'A' conversion
specifiers is that the characters to be printed are

stored in the FCRTRAN hollerith data type, instead

of the FCRTRAN integer dat. type.

The argument is taken to be a single precision
floa‘ing point number and is converted to the
decimal notation of the form [-]lmmm.nnnnnnn, where
the length of the string of n's is defined by the
'precision' specification. The default ‘'precision'

is 7. Lefault field adjustment is to the right.

oot -

Terminal and Text File Input/Cutput -- 6
CLPARS TERMINAL CHAKACTER INFUT/CUTEUT
E - The argument is taken to be z single precision
floating point number and is converted to the
decimel notation of the form [-Ilm.nnnnnnnE(+ cr =)ee,
where the length of the string of n's is defined by
the 'precision' specification. The default 'precison'

is 7. The default field adjustment is to the right.

L - The argument is taken to be a double precision
floating point number and is converted to the decimal
notation of the furm [-Ilm.nnnnnnnnnnnnnnnnC(+ or -)ee,
where the length of the string of n's is defined by
the 'precision' specification. The default precision

is 16. Cefault field ad justment is to the right.

If no recognizable character appears after the '$', that

character is printed; thus '$' may be printed by the usage of the

string '$$°'.

Terminal and Text File Input/Cutput -- 6
CLPARS TERMINAL CHEARACTER INPFUT/OUTPUT

The fcllowing lines contain some example usages of conversion

specifications and

their resultant output (NCTE, '_' represents a

space (' ') position).

if STR = 'abede!
$A = zbede

$-A = abcde

$+S = abcede
$A3.3 = abe

2be

$53.3

$+A32.3 = abe

$S7 = abcde_
$-A7 = abede___
$+AT = __abcde

if INT = 578

$I = 578

$-1 = 578

$+1 = 578
$I2 = 578 (*)
$-12 = 578
$+I3 = 578
$-I5 = __578
$-15 = 578__
$+I5 = _ 573

- ap o oy -

if FLT = 352.7C9
$F = 352.7¢C¢

$-F = 352.709
$+F = 352,709
352.71
352.71
$+F5.2 = 352.71

R4
"
wm
n
n

$FS.2

$FS.4 = _352.7060
$-FG.4 = 352.7060_
$+FG.U4 = _352.7050

(*) An example of what happens when a numeric field

width exceeds its "minimum" field width.

il

Terminal and Text File Input/Cutput -- £
CLPLRS TERMINAL CHARACTER ILPUT/CUTEUT
The following lines show exzmples cf the executicn time field

width and precision portions of a conversiocn specificaticn.

if STR =z 'aktcde', I = 32, and J = 7, then,
CALL TRMPUT ('sSA%*', STR, I)
'abede' is printed at the terminal
CALL TRMPUT ('s$A.¥*', STR, I)
'abe' 1is printéd at the terminal
CALL TRMFUT ('$A¥ ¥ STR, J, J)
'abede__ ' is printed at the terminal
CALL TRMPUT ('$AS.%', STR, J)

tabede' is printed at the terminal

TRMPUT signals its failure to write to the terminal by an

approriate errcr message.

6.1.3 TRMGET -
The calling sequence for TRMGET is:
N = TRMGET (format-string, argt, arg2, ...)

TRMGET is a terminal input function subprogram (It must be
declared as -a FCRTRAN integer). It reads characters from the
terminal, interprets them according to a format, and stores the
result in its arguments. The format string wusually contains
specifications which are used to direct interpretation of input

sequences.

146

Terminal znd Text File Input/Qutput -- €
CLPARS TERMINAL CHARACTER INPUT/OUTEUT

A formet string may contain:

- The special string characters representing blanks,
tabs, newlines, backspaces, linefeeds, carrizge re-
turns, or formfeeds, which are ignored (these will

be known as 'spsace'! characters).

- Crdinary characters (not '$') which are expected to
match the next non~space character of the input

stream.

- Conversion specifications, consisting of the character
'$', an optional assignment suppressing character '/',
an opticnal space skipping suppressing character '-1,
an optional numerical field repetition factor, a con-
version character, and an optional numerical 'HAXIMUM'®
field width specifier (i.e., the field tc be read may
actually be smaller than specified, but not larger
than specified.)

Note, the maximum field width specifier may be re-
placed by the character '#*', which indicates that
the argument following the one currently being pro-

cessed contains the value of the maximum field width.

150

D

Terminal ana Text File Input/Output -- ¢

CLFARS TERMNINAL CLARACTER INFUT/CUTFPLT o
A conversion specification is used t¢¢ direct the conversicn
cf the next irnput field; the result is placed in the veria-
ble poirted tc by the corresponding argument, unless
assigrment suppresion was indicated by the '/' character. 3
The assignment suppression character '/' directs TEMCET tc]
skip over the specified type of field in the input stream.
An input field is defired as a string of non-space cherac-

ters. However, an exception can occur when using an '4!

or 'S' conversion specificaticn. See 'A' description.

The following conversion characters are permissable:

$ indicates that a single '$' character is expected
in the input stream at this point; no assignment

is dcne.

I indicates that a decimal integer is expected in
the input stream; the corresponding argument

should be of type integer.

H indicates that a decimal integer is expected in
the input stream; the corresponding argument
should be of type half integer (i.e., in [EC
FCRTRAN the type is LCCICAL¥*1 or EYTE).

151

Terminal and Text File Input/Cutput -- € !
CLFARS TERMIUAL CLARACTER ILPUT/CUTFUT o

L indicates that & decimsl integer is expected in

the input stream; the corresponding argument
should be of type lcng integer (i.e., in TEC

FCRTRAN the type is IKTEGER*4).

A irdicates that a character string is expected in

the input stream; the ccrresponding argument

PO N

should be an integer array large enough to
accert the string and an end-of-string (ECS = O,
the null character) symbol, which will be added. ;
If an opticnal field width is not specified, the |
input record is terminated by either a space

character or a newline. T

If an optional field width is specified, only
a newline may terminate the input record before
the end of the field is resched. Thus, space
characters may be embedded in the output field

only if a field width is specified.

S indicates that a character string is expected;

this specification is identical to the 'A'

specification except that the corresponding arg-
ument should be a HCLLERITH field (i.e., in LEC o

FCRTRAN this is the variable LCGICAL#*1).

152

T s

Terminal ancd Text File Irnput/Cutput -- €
CLFARS TERMINAL CEHARACTER INFUT/CUTFUT

5y

|

E E indicates that & floating roint number is

) expected in the input stream; the corresgoncing
! argument snould te a single precisicr 'RELL? !
verieble. The input formet for a flcating point

number 1is & string of numbers, possibly ccntzin-

ing a leading minus sign, followed by an optional ;
exponent field containing anA'E' cr 'D', fol-

lcwed by a possible signed irnteger.

5] indicates that a floating point number is ex-

pected in the input stream; the corresponding

argument should be a double precision 'REAL'
variable. The input formest is identical to that

of the 'E', 'F' formet.

C indicates that a single character is expected in
the input stream; the corresponding argument
should be an integer variable. Lote, no ECS
symbol is tacked on the end of the character

in the ocutput field.

TRMGET returns, as its value, the number of successfully
matched and assigned input items. This can be used to decide how

many input items were found.

153

r

o

[stheca—rt Cody B TR

Terminal znd Text File Input/Cutput -- €
QLPARS TERMINAL CHARACTER INFUT/OQUTPUT

If 2 program termination symbol (& null 1line or carriege

return) is encountered by TRMCET, a -1 is returned.

If the CLPARS universal help symbtol (?) is feound as the

non-space character in the input record, a -2 is returned.

The following 1lines contain usage examples of the

conversion characters.

Current input string: "579_34 62158" ¥

1) N = TRMGET ('$I $II 211, J, K, L, M)
N =4, J=5T797; K= 3; L = 4; M =6
2) N = TRMGET('$2I2 $2I', J, K, L, M)
N =U4; J =5T7T; K=9; L = 34; M = 62158
3) N = TRMGET('$/1 $I', J)
N=1; J = 34
4) N = TRMGET('$/2I%I', J)

N=1; dJ = 62158
5) N = TRMGET('$/2I2 $I', J)

Current input string: "abed__efg_12j5"

1) N TRMGET('$A $A3', S, T)

N

+ v js strictly a place holder for spaces, i.e., a space
character really should appear where ' ' does.

154

2; S = "abed"; T = "efg" (see note on following page)

first

above

Terminal anc Text File Input/Cutput -- €
CLPARS TERMINAL CHARACTER INFUT/CUTEUT

kote:

Each character is represented by & single element 1in e&n
integer array. however, fcr —convenience,the cherecters will te
displayed here as contiguous character strings, addressed vis the
name o¢f the array. Also, there is an ECS symbol zttached tc the
end of all the character stirings enclcecsed in double quotes. When
the optional field width portion cf the 'A' conversion
specificaticn is missing, the input fielc is & string of non-space
characters, All initial space characters are skipped over and the
inpgut field is TERMINATED EY A SPACE CEARACTER or a LEW LINE. If
the field width is specified, then any initial space characters are
skipped over, and the FIELD WIDTH or a NEW LINE TERMINATES the

input field.

2) N = TRMGET('$2A3', S, T)
N =2; S =m"abe", t = "g__"
3) N = TRMGET('$/A $A5', S)

N =1; S =z "efg_1"
4) N = TRMGET('$A ¢A ¢A', S, T, U)

N = 3; S = "abed"; T = "efg"; U = "12j5"
5) N = TRMGET('$/A2 $A1 $/2A2 ¢C', 3, T)

N =2; S ="d"; T = '5' (no EOS; represented by single

quotes)
6) Il = TRMGET('$/2A $A', S)
N =z=1; S = "1235"
7) N = TRMGET(':X2$A :P$A :P& $A', S, T, U)

N =3; S ="d"; T ="abed"; U = "fg"

155

F

R R B

Terminal and Text File Input/Cutput -- 6
OLPARSE TERMINAL CHARACTER ILPUT/CUTPUT

€)Y N TRMGET('$ACC', S)

N =2 1; S = "abed__efg_12jt"

9) N TRMGET('$AgCgCsC, S, T, U, V)

W s lY4; S ="zbed"; T ="' '; U ="' 'YV = te

(Note: 'C' conversion specifier suppresses space skipping)

The following example shows how the 'execution time' field width

can be used.

10) N = TRMGET('$A¥$A*', S, 3, T, 5)
N

35 S = "abe"; T = "d__ef"

6.1.4 Some Notes Cn Terminal I/C -

Both TRMGET and TRMPUT are written 1in assembly 1language.
TRMGET and TRMPUT are entry points into the routines FILGET and
FILPUT, respectively (see Section 6.3). Essentially, the terminal
I/0 routines can be thought of as special cases of FILGET and

FILPUT.

A call to TRMGET is equivalent to:
CALL FILGET (terminal LUN, format-string, argl ...)

A call to TRMPUT is equivalent to:

CALL FILPUT (terminal LUN, format-string, argl ...)

156

N

' Terminzl and Text File Input/Cutput -- €
CLPARS TERMINAL CEAFHICS INFUT/COUTFUT

! 6.c CLFARS TERMINAL GRAFHICS INPUT/CUTELUT

Alcng with the terminal input/cutput rcutires, CLPARS hes =«
set of graphics input and output routines. blost of the ocutput
routines are utilities <closely resembling the FLTMAF FCETRAL
routines requested ty the buyer. The grarhics input routire,
necessary for some CLPARS functions, is not in the FLTVMAP routines,
and had to be written. The following sections discuss in mcre
detail the actual wutilities chosen to be part cf the CLPARS

graphics I/0.

6.2.1 Graphics Input Ctility =

The graphics input routine (GIN) is used to obtain graphic
display screen coordinates. First, this routine plzces the
graphics terminal into graphies input mode. It then waits for the
return of a graphics screen coordinate and the character that was
typed in to send the coordinate. If the display terminzl does not
have cursor wheels, a joystick, or some other hafdware graphics
cursor manipulator, GIN must take over this function (i.e., special
characters will have to be reserved for graghics cursor movement;
possibly 1l-left, re-right, u-up, d-down). This routine 1is a

system-dependent program.

GIN's program usage would be:
CALL GIN(X, Y, CHAR)
where all of GIN's arguements are of integer type. X and Y are the

terminal horizontal and vertical coordinates, respectively. CEAR

157

"-'-""-'-’-'.'l-'-'-'.-'l.Ill-IIlll".....'..I'-.-'-.-'-.....-._-__-__-___F_-‘

Terminal and Text File Input/Output -- §
CLPARS TERMINAL GRAFHICS INPUT/CUTFUT

will be the character used to send the coordinates back to tne

calling program.

6.2.2 Graphics Cutput Utilities -

The following depicts the type of graphics output functions

that CLPARS needs to have for its display purposes:

- the ability to place a text string at a specified point
- the ability to draw lines

- the ability to erase the screen and "home" (move to the upper
left corner) the cursor.

The subsequent paragraphs describe the routines that were
chosen from the PLTMAP utilities for the OLPARS graphies display,

plus two additional routines written, MOVE and RCTNGL.

6.2.3 TEXT -

This routine places a string of text on the graphics display,
starting at a given set of coordinates. The screen coordinates are
relative screen coordinates used to redefine the origin, Each
character of the string resides in a separate integer, and the last

integer position in the string must contain zero. f

158

Terminal and Text File Input/Cutput -- §
CLPARS TERMINAL GRAFHICE INFUT/CUTFUT

This routine places a given marker at a specified set cf
screen coordinates. The markers are those specified in the PLTMAF

utilities.

CLPARS uses this in its two-space displsy prcgrems.

This routine draws a lire between twoc specified points. It is

used to draw displey borders and data end logic tree structures.

6.2.€6 ERASE -

This routine erases the terminal screen <(and "homes" the

cursor, if not done automatically).

6.2.7 MOVE -

This routine moves the terminal screen cursor to specified

terminal coordinates.

6.2.8 RCTHGL -

This routine draws the outline of a rectangle given the

coordinates of two opposite corners,

159

£

Terminal &and Text File Input/Cutput -~ §
CLPARS TEXT FILE INPUT/CUTPUT

€. CLFARS TEXT FILE INPUT/CUTPUT

Any CLPARS text file input routine will need & way to reed
numeric characters from a file and convert then to birery
information. Likewise, a file output routine needs a way to
cenvert binary data into printable characters. The following two
sections describe the subroutines that will enable the CLPARS file

I/C routines to operate.

6.2.1 FILGET -
The calling sequence for FILGET is:
N = FILGET (lun, format-string, arg 1, arg 2, ...)

FILGET is a file 1input function subprogram. It reads
characters from a file, specified by a logical unit number (1lun),
interprets them according to a format (identical to TRMGET format),
and stores the results in its arguments., The format string usually
contains specifications which are used to direct interpretation of
input sequences. See Section 6.1.5. for further informeticn on

the format string.

FILGET returns as its value the number of successfully matched
and assigned input items. When the end of the file is reached,
FILGET will return a -1 as its function value. (On ERSX-11M, if the
file being read is actually a terminal, a CTRL-Z will simulate the
end of file.) When the terminal is being read by FILGET, a program

termination symbol (null 1line) will also cause a -1 to return.

160

B - o> v ,-u-q!lIwIl!.....-.-nw-n-u-nuunuuun-u-r—*vv
d < - AP ’ “'f“

Terminal and Text File Input/Cutput ~- ¢
CLPARS TEXT FILE INPUT/CUTFUT

This is not true when FILGCET is reading & file.

€.2.2 FILFUT -

The calling sequence for FILPUT is:

CALL FILPUT (lun, format-string, arg 1, arg 2, ...)

FILPUT is a file output subprogram. It formats, converts, and
prints its arguments to a file under control of & format string

(see Section 6.1.2.). The file is specified by a 1logicel unit

M s o o

number (LUN). i

FILPUT signals its success or failure at writing to the file

with an appropriate error message. Both FILGET and FILPUT are . o

assembly I/C routines.

6.3.3 Printing - CLPARS Output To A Computer Printer -

There are a few CLPARS programs that give the user the ability
to obtain printable listings (or text files) of a variety of CLPARS
data forms. Cluster plots, rank order matrices, and confusion
matrices are a few examples of the CLPARS data forms availzble for

printing.

The print utility commands create a file within the system, to

store the ocutput to be generated. Once the printer listing

generation is complete, the wutility makes a <¢all to a system

dependent program (PRINTR) that will send the file to a printer for

printing.

161

Terminal and Text File Input/Output -- 6
CLPARS TEXT FILE INPUT/CUTPUT

implemented.

PRTRNK*

PRTLS

PRTCM

PRTCLP*

PRTICX

PRTLCG

PRTOSD*

The following is a list of print utility commands that meay be

(The sterred ccmmands have not yet been implemented).

- used for rank order displays or probability of

confusion or cdiscriminant measure.

- used to obtain certain basic statistical

information about a data base.

- used to print out a confusion matrix.

- used tc¢ print out a cluster plot.

- used to index a particular display or set of
display symbols, and obtain information about

the vector that the display symbol represents.

- used to list the logic of the current logic

tree.

- used to produce a printer simulation of a

one-space display (micro view format only).

ik,

Terminal and Text File Input/Cutput -~ 6
CLPARS TEXT FILE ILFUT/CUTPLT

6€.32.4 CLPARS Lata Tree Input/Cutput -

Users of CLPARS will probably heve their deta on various
mediums,' such as disk or magnetic tape. CLPARS must be able to
read znd convert a user text file, containing data, into an CLPARS
tree (that is, create a tree information and tree vector file with

the users' data).

Also, a user may want to take an existing CLPARS data tree and
create a text file of vectors to edit. Therefore, CLFARS must

ccnvert its data tree to a "system" text file.

To make the programming of the above functions as minimal as
possible, all input and output data will have the same CLPARS
logical format. This format is specified in the programs FILEIN
and FILECUT (for the BRSX-11M system). Note, the output from
FILECUT can be used as input to FILEIN.

6.2.5 Some Notes Cn Terminal And Text File I/C -

The internal binary representation of character strings within
a computer program varies from program language to program
language, from operating system to operating system, and from
computer to computer. The terminal and file I/C routines (TRMGET,
TRMPUT, FILGET, FILPUT) can alleviate this problem of internal
character representation by using an integer index (into a table of
characters) which points to the character to be represented. This

would make CLPARS 1I/0 character strings system independent.

Terminal and Text File Input/Cutput -- €
CLPAKS TEXT FILE IKPUT/CUTFPUT

Under RSX-11M we have chosen not to include such & table
within the terminal and file I/0 routines, because the ASCII 7 bit
character set and 1its internal form within T[Ligital Equipment
Corporation FCRTRAN already give us & converient integer

representation for character strings.

Even though the terminal I/0 routines appears to be a special
case of file I/0 routines, there are some differences. Fer
instance, the terminal 1/0 routines will zutomatically "open" the
terminal logical unit number (if it is not open) while the file I/C

routines dc not.

164

SECTICN 7

CTHER FEATURES

7.C CLPARS FCRTRAN CCLCE GEHNERATICH

A user may create FCRTRAN code, which tecomes a subroutine
called by other programs. This method is used in the measurement
transformation command (MEASXFRM). liote, the FCRTRAN code
generation program (in this case, MEASXFRM) may or may not be able
to call up a FCRTRAN compiler to compile the FCRTRAL subroutinef
Cn systems that do not allow initiation of a FCRTRAN compiler from
within a program, the user will have to compile his/her CLPARS
generated FCRTRAN program. Under RSX-11M, CLPARS will be able to

call the FCRTRAN compiler (via a command file).

Example of user generated FCRTRAN code:

Function Lescription: MEASXFRM is a means of transforming one data
set with dimensionality M into another dsta set of dimensionality N
(N may or may not = M). This transformation is done by means of
character arithmetic expressions. Measurement 'i' in the new tree
is symbolized by NM(1i). Measurement 'i' in the old tree is

symbolized by CM(i).

165

] Cther CLFARS Features -- 7
CLPARS FCRTRAL CCLE GENERATION

For example, suppose we have, as the current data set, a tree
with dimensionality four and wish to <create another tree wi'h
‘ ¢imensionality five. Furthermore, suppose easch measurement in the
new tree is to be the same as that ir the old tree, with the

excepticn that measurement five of the new tree is to equal the sum

of messurements three and four of the o0ld tree.

The user would enter the followirg FCRTRAN statements:

NM(1) = OM(1)

NM(2) = OM(2)

NM(3) = CM(3)

NM(4) = CM(4) |
NM(5) = CM(3) + OM(4)

In the R3X-11M version of portable CLPARS, MEASXFRM is
implemented via a command file. An editor is initiated to accept
the above FCORTRAN statements. The statements are inserted into =&
subroutine which is compiled and 1linked with the rest cf the
MEASXFRM program. The commagd file then causes the precgram to
execute. For more details, see MEASXFRM in the CLPARS VI Program

Specifications.

An additional capability to save the FCRTRAN subrcutine is
available tc the user. This way, (s)he can easily use the

measurement transformation creazted under MEASXFRM many times.

166

Bt

Cther CLPAERS Feztures -- 7
CLFARS ECCLELL STATEMEKRT INTERFEETER

7.1 CLFARS ECCLEAl STATEMENT INTERPRETER

There are several other instances where &n CLPAKS user nrmezy
enter linguistic or Eoolean statements in the ccurse cf &nalysis
(e.g., linguistic partition in structure enslysis, linguistic grcug
lcgic or 1linguistic reject regions in logic desigr). Irn ezsch of
the czses, the user enters exactly one statement &end vectors are
tested agesinst this statment to see if & true or false value is
obtaired. In order to meke these programs (LINGPART, LINGLCC and
LINCRJCT) system 1independent, an interpreter program (INTKPD;
Interpret Eoolean) is incorporated into CLPARS to perform the above
test. This progrrm, which will be written in FCRTRAN, will be

system independent.

The Eoclear statement may consist of the following

information:

1. Measurement positions in a data vector.
2. Floating point numbers

3. Logical Cperators

4, Arithmetic Operators

5. Arithmetic Functions

167

Cther CLPARS Features -~- 7
CLPARS ECCLEAN STATEMENT INTERPRETER

additionzl advantages c¢f this scheme are:

o lo commanc file need be crezted.

o User interaction is simplified.

o The intergpreter can check the syntax cf the Eoolezn
statement and it returns with an errcr fleg if the

syntax 1s incorrect.

7.2 EATCH PRCCESSIKG INK CLPARS

Al

Eatch processing in CLPARS is a system dependent operation.
For instance, MULTICS, a multi-user time sharing ccmputer system,
allcws "batch" processing (known as sbsentee jcbs) to occur via a
cemmand Tile (see Figure 7-1). The programs tc bte run, alcng with
the input to these preograms, are all contained in a speciel command
file. The output from the programs, directed to a user terminsl,
is placed in a specizl file within the wuser's directcry for
examination at a 1later date. The absentee jcb is treated as if

there was a user at some terminal.

’

It 1is obvious that considerable familiarity with the
interactive «queries of MCOS (MULTICS OLPARS Operating System)

functions is necessary since all queries must be correctly answered

with the command file. The absentee job in Figure 7-1 could be
performed on a rnumber of data sets by simply changing the tree name

"datatree" to the names of other data sets.

168

Cther CLPAKRE Features -- 7

BATCLE PRCCESCING Ii. CLPARS

Under the KSX-11V [ystem, the "AT" ©[processor rLzndles tre
commenc file (betch) ©processing. In this system, the program's
termiral input dces nct come frem & file, &nd the rprogrem’s
terminal output 1is not put intc & file. This means thet the "AT"
processor does not trezt a command file as =2 separate termirel.

(Eence, it will not be used in the RSX-11M portable CLPARS).

Tc meke this "batch" processing transportatle to different
mschines, there should be two separate CLPARS. The difference
between the two systems will occur in the terminasl I/C packages;
cne package will communicate directly with the terminal, the other
(in the batch system) will communicate with files (i.e., batch
OLPARS will get its commands from one file &and put its terminel

cutput into another file).

The total size of the batch system could also be reduced by
keeping only the programs that create character output in the
system. This decision will be left up to the people who want s

batch version of CLPARS on their computers.

An example of an CLPARS command (batch) file cal. be found in

Figure 7-2.

Cther CLPARS Features -~ 7
EATCE PRCCESSING IN OLPARS

cwd > udd > C > CLPARS (change working directory
to CLPARS)
restore data tree (restore the design data set)
4y (answer questicns related to
300 console type and baud rate)
fisher (invoke fisher pairwise
logic)
0 (select opticon 0)
1 (select 1 threshold)
8 ' (set minimum vote count to 8)
yes (hard copy confusion matrix
and
yes list of errors to line
printer)
no (halt fisher calculation)
logout

Figure 7-1 A MULTICS Command File

170

SETLS
/
TREE1
NODE1
/
FISHER
/

YES
YES
NC

NOTE

Cther CLFARS Features -- 7
EATCE FRCCESSING IN CLFAERS

(set data set)

(answer questions related to
treename and nodename

(for the current data set desired)

(invoke fisher pairwise logic) P

(select option 0)

(select threshold)

(set minimum vote count to 4)
(send confusion matrix and a list
of errors to line printer)

(halt fisher calculation)

¢ "/" delimits answers to program questions

Figure 7-2 Example of CLPARS Command File

171

Cther CLPARS Features -- 7
BATCE PRCCESSING IN CLPARS

within an KSX-11M OLPARS, the batch mode will be hkandled in
the following manner. A separate "betch" CLPARS would be in
existance. A user would create the command file via an editor
program. (S)He then runs the batch CLPARS (ECLP) while in his/her
GLPARS directory. BCLP executes the ccmmand contained within the
command file. Cnce BCLP is started up, the user could not run the
interactive version of OLPARS, but could run other tasks within the
KSX-11M system. Located within the user's directory, would be the
file containing all of the terminal output from the batch CLPARS
session., The user could use a system command (PIP for instance) to

view the contents of the file after execution of ECLP.

7.2 EXPANDABILITY

Adding new applications programs to FCRTRAN CLPARS, or
inserting additional options into already existing programs, should

be a relatively simple task for the following reasons.

o If a new command is to be added, the entire system
does not need to be recompiled or have its tasks
rebuilt. The new prograsm must be compiled together
with the CLPARS subroutines it needs, and its name
must be inserted in the list of allowable command

names that is accessed by the CIP (or the operating

system).

172

[PN

Cther CLPARS Festures -- 7
EXFANCAEBILITY
The modular construction of the CLPAERS pregrams will
mean that & good part of the ccde for any new progrem

will already exist.

lew options in existing rcutines can be programmed by
changing only the particular routine and, most
probably, by changing only a few of the subroutines
of that particular routine. Many of the CLPARS
commands have been designed to accommodate additional
functions by adding subroutines and giving the user

additicnal options.

173

"

{]
i
i

SECTICON &

SYSTEM CEPENDENCIES

In a system as complicated as CLPARS, where there is a large
amount of input/ output with files, the printer, and especially the
terminal, there must be system dependencies to handle these
features as well as others. In order to make CLPARS as portable as
possible, the system dependencies have been isolated into a set of
routines that will be called by the rest of CLPARS to perform the

dependent functions like I/C. In this section, we review the
system dependent functions of portable CLPARS with explanations

here, or with references to documentation elsewhere.

o Start Up and Sign Off

Signing on and off CLPARS is system dependent. CLPARS needs
an initialization routine to set terminal characteristics in files,
or initialize other files. When there is no executive program, the
user must call this routine (HELOLP) when (s)he first starts up the
system. If an executive command input processor (CIF) program
exists, then this initialization routine can be called

automatically for the user.

When the operating system has special interrupt functions to
abort programs, signing off of OLPARS can be slightly tricky. If
CLPARS programs do not have the ability to catch the abort

interrupt signsl, it could very well mess up the CLPARS file

174

System L[ependencies within CLPARS -~ ¢

structure. If this is the case, users should avoid the signal
abort feature on their system when running CLPARS. Under RSX-11M
FCRTRAN, a user may type s control-Z (°Z) when entering input to a
program. This =simulates an end-of-file interrupt signal. Sirce

this interrupt can be caught by programs, RSX-11M CLPARS users need

not worry about using it.

OLPARS programs should 1leave gracefully, so there is a
standard procedure for exiting OLPARS programs., If a user enters a
null line during an input sessicn with an "OLPARS program", the
program wWill exit. To exit "CLPARS" (that is, the CLPARS comand
level) the user must type BYEOLP; a null 1line will not alloew
system termination at the command level.

0 The Command Input Processor {(CIP) (See Section 2 and
Appendix &)

o Spawning (See Appendix A)

0 Compilation and Execution of FCRTRAN Statements typed
in by the user (see Section 7.0)

0 Terminal and File Text I/0 (see Section 6)
o Use of a "Batch"™ OLPARS (see Section 7.1)

0 Programmer Aid Cptions (see Appendix G)

o Character Handling (see Section 6)
00 character string compariscns
oo character string terminator

oo character string length determination

175

kMo cico

P NPT

TR

-_i

T

System Lependencies within CLPARS - 8

o Prccessing bit maps in the LI file (see Section 4.€)

0 Creating "system" file names from CLPARS tree nzmes

Cn computer operating systems that hzve file names which are
smaller than CLPARS tree names, a unique, algorithmicelly generated
file name must be produced from the tree name. An alternative
method would be to create a set of unique file names, having
ncthing to do with an CLPARS tree name. The file name would be
associated with the tree name through some file or table. (See

discussion of File Code Table in Appendix E).

AFPENDIX A

THE CCMMANL INFUT PRCCESSCR (CIP)

or

How to "talk" to CLPARS on RSX11M version 3.2

This section describes the programs and files necessary for
contriving the Command Input Processor (CIF), "login" function
(HELCLP), and "logout" function (EYECLP) under the ULEC operating
system RSX1IM versicn 3.2 (reader must be familiar with this

cperating system).

The CIP program only partially implements the CIP function.
Its Jjob 1is to prompt the user for an CLPARS cogyénd name and make
sure what the wuser has typed 1is wvalid (it accerts initial
substrings of all commands, except BYECLP). It produces a command

file which invokes the CLPARS command recguested by the user

(explained later).

The CMINIT program, which initializes the terminal screen
parameters and CLPARS system directory string*® in the user's
Communications (CM) file, partially implements the HELCLP function

(hello OLPARS, or "logging in"). It welcomes the user and displays

* The operating system manager must "install"™ the two programs
CIP and CMINIT as "...CIP" and "...CMI", respectively, because
they both need to access their system command line (via system
supplied subroutine, GETMCR) for the CLPARS system directory
location.

177

Command Input FPrccesscr (CIP) on RSX11M v3.Z -- A

a list cf terminal types known t¢ CLPARS. It asks the user to name

the terminal type (s)he is using. The progrem uses the name typed

ir to find a file containing the screen parameters to te placed ir
the wuser's Communications file. It is important that the ccrrect
screen parameters are obtained for the given type of terminel;
ctherwise, erroneous results may occur when using "interactive"
CLPARS’displays. CLPARS essentislly remembers the last terminal at
which the wuser has "logged in'", so supplying an empty response to
the CMINIT prompt is perfectly safe as long &as the operator is =zt
the same type of terminal (s)he has used at his/her last CLPARS

session.

Three command files complete the implementation of the CIP,
HELOLP, BYECLP functions. The files are "HELCLP.CMLC",
"CLFDIR.CML", and "BYECLP.CMD". The user "logs" 1into CLPARS by
invoking the HKELOLP command file*, The commznd file locates the
CLPARS directory by invoking the "CLPDIR.CMD" file**¥., HELCLP then
queries the wuser for the "login" name assigned to him/her by the
GLPARS manager. It uses the "login" name to find out where the

user's CLPARS direc.ory 1is located. Next, the CMINIT program is

® The user may type "@HELCLPY or
"@(directory-specification]HELOLP" to start up the command
file. A "login" request will follow. To skip the "login"
request, the user may type "EHELOLP <user name>", where
<{user name> is the user's "login" name.

#% wCLPCIR.CML" must be located in the same directory in which
"HELOLP.CML" resides. "CLPDIR.CMLC" should be modified by
the person responsible for maintaining CLPARS sc that it
points to the directory in which all the CLPARS commands
reside (the CLPARS system directory)

178

~

! Command Input Frocesscr (CIF) cn ESX11M v3.2 -- 4

invcked by HELCLP. Finslly the CIP prcgram is activaeted and CLFARS

is ready to do worx for the user.

The command file c¢reated by the CIP program (czllec
"CLPCCM.CML") is invoked by the EHELCLP command file after the CIF
program terminates. The "CLPCCM,CML" file contains the necessary
informaticn needed to start up the user requested CLPARS ccmmand.
It also lets the HELCLP command file "know" thch CLPARS command
has been executed. If the CLPARS "logcut" ccmmend (EYECLP) was
requested by the user, the "BYECLP.CML" file 1is invckec. Cnce
WEYECLP.CME" is finished, the HELOLP commend file stops its own

execution. ;

The following two pages illustrate the COLPARS Command Input

Processor, "login”, and "logout"™ functions, and relationships
between RSX command files and GLPARS programs implementing these

functions.

Comriand lnput Frocesscr (CIF) on REX11M v3.2 -- &

HELCLP CCMMALD FILE (HELCLF.CHL)

1. invoke CLPPIR.CLL
2. Query user for login name
3. call CHMINIT program

repeat
4, call CIP program
5. invcke CLPCCH.CMLC
until (user types "EYECLP"™)

i 1. ask user for terminal type
i 2. initialize terminal screen
H parameters and CLPFARS

H directory string in user

| CM file.

‘ repeat

I I prompt user fer CLPARS

! command
1]
'
]
[}
]

until (command is valid)

2. create CLPCCM.CMLC

D T - - v Ry - wh S D TR D e wn) W S en D e e -

nitiate user requested CLPARS
ommand

O e

- - - - e G G R L D G D e D = o -

CLPARS Command Input Processor, "login", and "logout"
functions Summary

180

AD-A118 731 PAR TECHNOLOGY CORP NEW HARTFORD NY 6 9/2 .
ON-LINE PATTERN ANALYSIS AND RECOGNITION SYSTEM. OLPARS VI. PRO--ETC(U) S

. NL

Y JUN 82 S E HAEHN» D MORRIS
UNCLASSIFIED PAR-82-15

END
oare
SiNED
09:82
oTIC

. ,/1

Command Input Frocessor (CIF) on RSX11M v3.z -=- A

i Any RSX11M directory)
g \ %% contains
R e L S e H strings
{ ! HELOLP.CMD) : i
===zssz=ss=zsz===2 H H i IMLAC 3
i OLPARS system | | N/ 777770 TEK40O 14
i directory 1{eccaccnaa CLPLCIR.CMLC i TEKU4CHS1
E E E i////////////////////////iE)
]]]] ['} 4
i g i | Login Name Validation || =sss=s==zs=z==z==z==
H i i 1 and User [LCirectory 1) OLPARS user ' ‘
1 | i | Information ec-cemcecccaa- >{ directory H 1
[}] 1 [] 11 [] []
f @ zm—meeSsemceosas [}]] L []
| ITERMINALS.TXT=mem-eemnn b |
P i HE \ I i
| |=—=emccccceas i HE \ 1 eeemecemeeeo '
! ITEK4051.TXT —me-—ee—men-- > CMINIT =emcemmee—ee——- >! CM.CLP '
| l=sememcencnaan i P / S et T] P
! JIMLAC.TXT =-eceece--- / b ! H
| j=~=ececcccaaaa H A I i]
! ITEK4014.TXT ~—mm--e-e-- by :
| =meeeceecce-o | I R i]
i i Voo T i E
| meeemccecc—a- H Vo Pl] memmcccneeeo H i
i IPROGRAMS.TXT cecccccecccaa-a > CIP coaceccccacaaa > GLPCCM.CML ||
| meeemmcecccaeao ' P 11 | eemmmcecce—- i '
i i T I] i '
] i Y L L DL L L P i i
! H =s==s==s=z=sz==s=sSs==s=2==z=== ! H i
| me—eccccccceca- H H i H
{ {BYECLP.CMD i | i H
| —~—meemec—a- ' i H H
: . :< --- :
i . H H H
1Glpars Commands| ' ' }i
i i H H ;
.............................. {
i
Relationships between KSX command files and 3
OLPARS programs implementing the Command ?
Input Processor (CIP), "login", and "logout" {
functions

AFPENLCIX E

CLPARS RSX-11M SYSTEM CEPENDENT FILES

B.1 Tne CLPARS Directory

Each CLPARS program including the CIP, resides as a segment
task (.TSK) file in the CLPARS directory. There are also severszl
purpose files which reside in thic directory. These 1include the
CLPARS option file (OPTION.CLP) ¢the CLPARS option text file
(OPTIGK.TXT), the CLPARS terminal screen coordinate files
(including TERMINALS.TXT), and the OLPARS program dictionary
(PROCRAMS.TXT). These files are described 1in the following

sections.

B.1.1 OLPARS Option File

The option file contains the names of all OLPARS commands, an
associated option number, and a possible list of other options
(programs) that are associated with a given option. Under RSX-11M,

the option file has the name "COPTION.OLP" and is a fixed length

record (block 1/0) file.

The first word of the first record of the option file contains
the number of options in the file. The next portion of the file
contains the option name - option number associations. This part

of the file has the option names in alphabetical order. The next

182

RSX11l System Lependent Files -- L

o d

section holds the option numiers and cption 1list pointers. The
cption numters are sortecd into sscencing numericzl order. The last
section contains the cption list, which is nothing more than sz list
cf pointers to the option nzmes in the option name-option numter
section. The first number in the option 1list 1is &actually tke

nunber of options contained in the list. (See Figure E-1). .

The two CLPARS programs that access this file are SETCPT and

GETCPFT. SETOPT lcoks through the option name-cption number section
for an option name. It returns to its calling program the ortion
number of the opticn name for which it was lccking. If SETCFT
cannot find the given option name, it will vreturn ‘'AKYTHING's

ortion number. CETOPT scans through the option number-option list

VISV UPIY SUR SUUHIUEY SO IR

pointer section for an option number. It will return to its
calling program the names of the options pointed to by the elements i
of the option list secticn. UHNote that an option may have more than '1
one option 1list associated with it, i.e., multiple menus (see |
Figure Bb-1, option #20). It is also possible that an option does

not have an option list (e.g., option #90 in Figure E-1).

B.1.2 CLPARS Option Text File '

A system dependent program called MAKOPT creates the options
file (CPTION.OLP) from a source text file (OPTICN.TXT) containing

each CLPARS command with its cption number and option 1list. This
program should be wused only by CLPARS programmers/maintainers to

create the proper option file (see Appendix C for usage of MAKOPFT).

183

RSX11M System Lependent Files -- B
OLPARS GPTICN FILE 4

CPTICN FILE
RECCRL KNO.

b 1 i ¢ # of options H 1
celmeccccecccecccemccecmcc— e emcccccccccc— e~ ———
2 : ABCE 10 i
H)
3 ! AKLMC 20 ! !
H) A
4 ! DEFG 40 { i
[] (]
) |
5 i EFG 100 1 Cpticn name - 1
] ! Option number
6 | FLX 50 | Section .
] [] 4
]]
7] LVD 60 i (header) o
1 i g
8 i STU 70 H &
1 i]
9 : VDA 80 ; !
i i i
10) ZBL 90 !]
celmcccmcccccecacmcacccmc - mmcccccceccmec—c———— ;
11 i 10 20 i
12 H 20 21 22 23 i
13 H 40 24 H
14 | 50 25 i\ Option number -
1 { Option list pointer
18 ' 60 26 ! Section
16 70 27 i (logical entry)
17 H 80 28 H
18 i 90 -1 H
19 ' 100 29 :
celecccmeccccmcmcacacacccacamaca— ecmcccccsccmccc—e————
20 H 4 4 5 3 8§ |
21 H 2 7 y i
22 : 2 8 9 i
23 ! 1 6 ! Option list
24 i 1 8 { Section
25 ! 1 5 : !
26 i 3 8 y 6 ! (logical entry) i
27 H 2) 2 !
28 | 2 3 5 : f
29 ' 1 8 H |

Figure B-1 OLPARS COption File (OPTION.CLP)

184

RSX11M System lependent Files ~- B

Trhe format of the source text is as follcws:

PRCGRAM NAME : CPTICN # : MENU # : CPTICHN 1 ... CPTICL 15

~

The program name refers toc an CLPARS command. The meximum
length of a program name allowed in the CFTION.CLP file is 10
characters. The option number is an arbitrarily assigred wunigque

number.

Cnce the option number is assigned to a program, that progrem 3
should always retain the same option number. The reason for this {

is that user files (logic trees, for instance) retazin the option

numter (of the program that created them) as data. If the option
number of an existing CLPARS program were changed, all the user
files contairing that option number would now have incorrect cption

numters.

The menu number represents the different possible menus
(option 1lists) that a single CLPARS command might display. The
menu numbers need not be in order, but they must be continuous
(that 1is, if there are four different menus, the menu numbers used

must be 1, 2, 3 and 4).

The option list is a set of "other" CLFARS commends that may
be wused after "PROGRAM NAME™ has completed it computations. The
command names are separated by spaces. The last option should have
a "slash"(/) following it. The slash must be separated from the

last option by at least one space (see Figure E-2).

185

o —————

RSX11M System Lependent Files ~- B
OLPAKS OFTION SCURCE TEXT FILE

This example format

was used when producing

the option file found
in Figure E-1.

e we wo we we

ABCC : 10

1 DEFG EFG AKLML STU / :
AKLMD : 20 1 LUD CEFG / . 1
AKLML : 20 : 2 STU vDA / '
AKLMD ¢ 20 : 3 FEX /
DEFG : 40 : 1 STU / 1
EFG : 100 1 STU / 1
FLX : 50 1 EFG / J
LVD : 60 1 STU CEFG FDX / :
STU : 70 1 DEFG ABCC / o
VDA : 80 1 AKLMD EFG / ;
ZBL : G0 1 /

kadbianl

Figure B-2 OLPARS Option Source Text File

186

ESX11M System [eperdent Files -« L

The maximum number of options allowecd in the opticn list is 15.

A semicolon found in column one of any text record will cencte
a comment line (a line to be ignored by the MAKOFT preogrem). Blank
lines are not allcwed in the file (they cause MAKCFT tc quit
reading the file). The option list may extend over several lines.

If this occurs, comments MUST NCT separate the lines,

In the example given (Figure E-1), the programs names are irn
alphabetical crder, This 1is necessary to create a proper option

list file.

In the current 'CPTION.TAT' file a few of the program names
have been commented out because of space consideraticns within the
MAKOFT program. Those that have been commented out will name
"ANYTHING' as their option 1list (see SETOPT in section BZ2). In
fact, any program (with a name in the 'OFTION.TXT' file) that does
not <er the mathematical projection of a data set, or the actual

vectors within the current data set may be commented cut.

B.1.2.1 Future Cption File Maintenance

A mocdification to the current cption file scheme would give
CLPARS maintenance people better control over the consistency of
the "ANYTHING" command found in CLPARS. A description of how the

"ANYTHING" command works is now in order.

187

RSX11M System Leperdent Files -- E

Currently, ANYTHING is a very simple prcgram. It simply reacs
a text file (ARYTHING.TXT) and prints it ocut to the user's
terminal. The file contains a list of all the CLPARS programs cnd
the category in which they reside. This means that whenever a new
cemmend 1is added to CLPARS, both the CPTICH.TXT file ard
AKYTEING.TXT file must be modified. This could cause ccrnsistency
prcblems for an CLPARS maintenance person if (s)he forget (heaven
forbid, not me) to alter both files. To subvert this prcblem,
changes would have to be made to the CPTICN.TXT file (thus, the

CFTICN.CLP file), the MAKCPT program and the ANYTHING program.

1. To the CPTION.TXT file, a category code would be added to

each program record. Note, all commands would have to be
entered into the CPTION.TXT file (not "commented" out like

some are now to save array space in MAKCFT).

2. MAKOPT would have to be changed to handle the categcry code.
To save space in the program, a temporary file would have to
be created for option list storage (which means a "re-think"

on the whole MAKCPT algorithm).

3. The ANYTHING program would be re-written to read the new
CPTION.CLP file created by MAKOPT (The ANYTHING.TXT file is

no longer used). It would then organize the program names
according to their category code, before printing cut the

results to the terminal.

[y

4

ASX11¥ System Lependent Files -- B

For an alternative to the abcve, MAKCFT could do all the
categorization werk end add another list tec the CFTICHN.GLP file
with all the programs placed within their own categories. Then
ALYTEING would be less complicated than previously menticned. This
moaification {(on system dependent programs) is cnly suggested for

easier maintenance of CLPARS.

B.1.2 CLPARS Terminzal Screen Coordinate Files

The terminal screen parameters (see section 5.1.4) are stcred
in individual text files found in the CLPAR system directory. The
name of these files are stored in the file TERMINALS.TXT, also
found in the same directory. When a user "logs" into CLPARS (see
Appendix A), the TERMINALS.TXT file 1is displayed at the wuser's
terminal. They, in turn, choose one of the terminal names (file
names, without the filename type or extension name added) from the
list displayed. The file type, ".TXT", is attached to the terminal
name chosen. The resultant name 1is wused to access the screen
parameters file. The screen parameters are stored in the user's
Communications file. The following text shows an example of the
contents of a TERMINALS.TXT file and the contents of a screen

parameters file.

189

R i H Y e

ESX11M System Lependent Files -- E

Example Contents of TERMINALS.TXT

tek4ClUa - Tektronix U014 with smezllest size cheracters
tekl4014b - Tektronix 4C14 with next to smallest characters
tek&0ilc - Tektronix 4014 with next to largest characters
teklC51 Tektronix 4051

IMLAC - Tektronix compatebility mcde only

Example Contents of TEKHCS51.TXT

640 Ws - no. of display units in screen widtn
480 Hs - no. of display units in screen height
46cC Wd - no. of display units in display width
361 hd - no. of display units in display height
S We - no, of display units in char. width
14 He =~ no. of display units in char. height
88 a - x coord., of lwr. left corner of display
75 b - y coord. of 1lwr. left corner of display
548 c - x coord. of upr. rt. corner cf display
466 d - y coord. of upr. rt. corner of display
28 MrWw - number of rows in a cluster plot grid
40 Nel - number of cols. in a cluster plot grid
T4 LeH - number of characters in a screen line
C Not used, yet
133 e - x coord, of left side of 1 space base line
96 f - y coord. of lowest 1 space base line

503 g - x coord. of right side of 1 space base line
10 Ne - max. no. of classes on 1 sp. macro plot
28 Cs - distance between macro base lines

B.1.4 CLPARS Program LCictionary

The CLPARS program dictionary (PROGRAMS.TXT) is a simple text
listing of all the OLPARS commands, kept in alphabetical order.
The Command Input Processor (CIP) uses this list to verify whether
or not the CLPARS user has entered a legitimate CLPARS ccmmand.
The file may contain seme line comments. There must be at least

one space between the program name and the comment.

160

RSX11M Cystem LCeperndent Files -~ E

Example of a Frogram Licticnary:

ANYTHING ; This programs displays the AKYTEING.TXT file
BYECLP ; program used to exit CLFARS
CRALNDTS ; create a random data set

CDATANOD ; delete a node from a datza tree

B.2 The User's Lirectory

Each CLPARS user must have an ESX-11M directory tc store lccal
CLPARS wuser files. These include fixed and varisble files,
temporary sequential files containing informetion to be sent to a
line printer, and ASCII data files. The fixed and variable files
have been discussed in great detail in earlier sections. The
sequential files for line printer output are created and opened by
a system dependent program OPENS. They are writter into by the
routines that produce 1line printer output. An operating system
utility (PIP, on RS8X-11M) will cause the file to be printed and
then deleted (depending on local operating system configuraticn)

from the user's directory.

191

REX11l System Lepencent Files ~- B

The ASCII datas files are used during the process of reading cr
writing data to files. 1In order tc create an CLPARS dats tree frenm
data within a file in the user's directory, the data must bte 1in
CLPARS data file input formzst (see the descripticn for FILEI!N in
the CLPARS User's Manual). Similarly, the data file <created by
FILECUT (the CLPARS data set dumping routine) is put irnto the
CLPARS data output format (see FILEOUT in the CLPARS User's
Manual). The file created by FILECUT <can be used as input tc
FILEIN. Two of the user files which are system derendent are the
File Code Table (FCT.CLP) and History (HS.CLP) file. The FCT is
described in the next section. The history file is described in

Appendix E, along with the CLPARS instrumentation packsage.

192

. TR Lo L L

ESX11in System Lepencert Files -- E

E.2.1 File Ccde Table

The CLPARS File Ccde Table (FCT) contains the system names of
the fixed and variable files that belong to zn CLFARS user. The
systen names of the fixed files resice in the first 1C entries <cf

the FCT as fcllows:

File Entry (File Code) RSX-11M File MNere
Cecmmunications 1 CM.CLP
Tree Lisc 2 TL.CLP i
Logic List 3 LL.CLP 3“
Pisplay Informeation g DI.CLP
DCisplay Value 5 DV.CLP
Projection Vector 6 PV.CLP
Scratch 1 T S1.CLP
Saved Vector 8 SV.CLF
Saved Transformation Matrix 9 SM.CLP
History 10 HS.CLF

Under RSX-11M, the FCT will be a direct access file (using
CLPARS "block™ 1I/C) with a record size of 8 words. The first
record, the header, will contzin a pointer to the next available
entry to be filled (first entry in the free list link), the number

of filled entries, a pointer to the last entry in the free 1list

link, and a pointer to the last entry in the tzble. These four

integers will be found in the first four words of the first record

(see Figure E-=3).

193

RSX11M System L[ependent Files -- E

FILE CCDE TABLE (FCT)

Ny

= W

O W0 oo N O WU,

12
13
14
15
16
17
18
19

Figure

next availeble entry
number of filled entries
last entry in free list link
last entry n file code table

E~-3 File Code Table

REXT11M System Lerpendent Files -- E

The rest of the file contains the RSX-11 file nzme reccrcs
that CLPARS needs to access the user's fixed and veriatle files. 4
file name record consists of a free list link pointer and & file
name. In the first werd of the file name record resides the free
list 1ink pointer. The last seven words contain the file name,
including a null character (zero in CLPFARS). When the free list
pointer is zero, the file name portion of the feccrd contains the
file name of an existing RSX-11M file. When the pointer is
non-zero, the file name record resides in the free 1list of file
name records, i.e., the file name record is aveilable for use by
OLPARKS. 1In Figure B-3 entries 13 and 14 are in the free list even
though they have an old file name left in the file name portion of

the record.

The "free list" is a linked chain of file name records. The
head o¢f the chain is found in the first record of the ¥CT. It is

called the next available entry pointer (see abcve).

The last lirk in the free list chain contains a -1, an invalid
link wvalue. If the File Code Table is full, both the next
available entry pointer znd the last entry in the free 1list 1link
equal zero. If the next available entry and the last entry in the
free list link are equal, but not zerc, then there 1is one free
entry 1left in the File Code Table. This entry's link will ccntair

the -1 mentioned above.

195

REX11k System [ependent Files -- L

The size of the File Ccde Table will determine the number of
trees an CLPARS wuser may have within his CLPAKS directory. The
size cf @ user's FCT can be determined by an CLPARS installation
manager wWhen (s)he creates a wuser's directcry. t mey alsoc be

extended at a later date.

APPENDIX C

STEPS TC TAKE IN EXPANDING CLPARS ULLDER RSX-11M

¢ Adding s ccmmand to CLPARS:

1. Put the name of the command in the program dicticnary
(can use ECI editor utility) in alphabetical crder. The

program directory is in the CLPARS directory.

P

2. Add the appropriate entries to the CPTICL.TXT file b
(using ELI) in the CLPARS directory ancd execute the A

program MAKOPT for a new options file.

3. Create a Help file for the command within the help
directory and add the command name to the help

dictionary(see Appendix D).
o Adding a user to CLPARS:

1. Create the user's "system" directory with the UFL

utility (provided by LCEC on RSX-11M).

2. Add the user's "login" identification along with the User
Identification Code (UIC) of his/her newly created

directory to the HELOLP.CMD command file, found in the

197

Expranding CLPARS CN RSX11M -- C

CLPARS directory (use ELI).

3. Use the GEN programmer's aid to create the fixed files in
a user's directory. {(GEN can also be used to expand the

FCT table of an "old" CLPARS user.)

' & prowwent el e o

SIPSIEIPRNUTPELITE WP

AFPEKDIX D

OLPARS "EELP"™ FUNCTICL

The help file gives the user informestion, at nis/her terminel,
about an CLPARS subject or command. The "HELP" prcgram is system

dependent.

The "EELP" program prompts the user for input. The user may
type 1in the name of an CLPARS subject or command for which (s)he
desires information (help). Initial characters (substrings) cf the
command or subject name may also be typed. The user may type "ALL"

for a list of available help files.

All the text, used to describe a specific CLPARS subject or
command, 1is referred to as a "HELPY file. The character string
typed by a user, in response to the "HELP" program prcmpt, will
identify & "HELP" file to be accessed. All "HELP" files exist in
the same directory and have the same RSX-11M filename extension

(e.g. ™".HLP").

In addition to accessing the "HELP"™ files, the "HELP" program
accesses a file called "HELP.TXT" (the help dictionary), and a file
called "HELPDIR.TXT." “HELP.TXT" contains an alphabetical listing
of sub jects and commands for which help 1is available.
"HELPCIR.TXT" contains the device name and directory string needed
to 1locate the "HELP"™ files. It also contains the ESX-11M filename

extension for the "HELP"™ files. The "HELP" program uses the

1¢9

The "EELP" Function -- [

infermation in YEELPCIR.TXT" to construct the complete RSX~11M
filename for the "hLELP" file to Dbe accessed. The filenames
"HELP.TXT" &and "HELPDIR.TXT" are "built-in" tc the "HELP" program.
If for socme reason one wanted to change these nzmes, the "LELP"
program would have to be modified., These twc files reside in the

CLPAR system directory, where the OLPARS tasks are located.

The existence of the "HELP.TXT" file makes it possible for the
user to tyre a substring of a subject or command for which help is
being requested. The "HELP" program searches the "EELP.TXT" file
for the user-typed character string. 1If the character string is
found, the complete subject or command nzme 1is gotten frcm
"EELP.TXT" and is used to construct the "HELP" file name. Thus it
is nct necessary for the user to type the entire name. The
user-typed character string should, however, be sufficiently long
to be unique within "HELP.TXT." If the <character strirg 1is not
unique, help will be provided for the first subject or command in
YHELP.TXT" whose initial characters match the user-typed character
string. If the "HELP"™ program does not find the user-typed
character string in "HELP.TXT," the character string itself will be
used as the "HELP" filename and an attempt will be made to access
the help file. Thus, there may be help available for subjects and
commands which do not appear in "HELP.TXT." If the user wishes to
access these help files, (s)he must type the complete "EHELP"

filename (not including the filename extension).

200

da

The "LELP" Furncticn -- [

Cne special help file, the "ALL"™ help file, exists tc provide
the user with a 1list c¢f subjects and ccmmands for which help is
availeble. The formet cf the "ALL" help file may veary. Sut jects
and cemmands may be listed together or sepsareately, cr
alphabetically or categcrically, cepending cn the system menzger"s
preference. Cne-line cdefinitions for subjects and ccmmands may be
provided (e.g. since RSX-11M filenames are 1limited to nine
cheracters, and it is difficult to describe & subject using only
nine characters, "HELP" filenames pertaining to CLPARS subjects may
not have meaning to a wuser. Therefore, a ore-line description

could accompany the subject name in the "ALL" help file).

The "HELP" function is designed to be flexible. The fcrmat of
the help files (including the "ALL" help file) may vary and can be
designated by the system manager. "HELP" files may be added to the
help directory, at any time, through the use of a2 text editor. The
system manager should obtain user feedback to determine which
OLPARS subjects should have "HELP" files, and to decide upon a

format for those files.

201

- e

The "RELP" Function -- C

An example of filename construction using "HELP.TXT"
and "HELPLIR.TXT."

HELP.TXT ccrtains the following help filenames:

APPEND
CCEFAULT
CSCRMEAS
FILEIN
L2EIGYV

HELPLIR.TXT contains the character string:
DBC:[313,46].HLP < ANY USEFUL CCMMENTS MAY OCCUR HERE >

The user types the substring 'LCSC' in response to the
"HLELP" command prompt. The YHELP"™ program searches the
"HELP.TXT" file to find the string 'DSC'. M“EELP" retrieves
the "HELP.TXT" entry for 'DSCRMEAS'. UNext, it reads the
directory string from "“HELPDIR.TXT" (a2 right bracket , ’_
indicates the end of the directory string). It appends the :
name 'LCSCRMEAS' to the directory string. Lestly, it reads
the filename extension . HLP" from "HELPDIR.TXT" and
appends this to the directory-filename character string.
The result is the complete filename:

DBC:(313,46]DSCRMEAS.ELP

This "HELP" file is printed at the user's terminal.

202

Torm s b Ar o

AFPENLIX E

OLPARS Instrumentation FPazckege

The instrumentation package 1is wused as a debugging tccl
(instrument) for CLPARS programmers., The package consists of &
series of subprograms that will enable a programmer tc keep track
of the entry and exit of a program, along with the values cf

specific variables within the program.

E.1 Philosophy

The programming staff at PAR has slready had experience with
the wuses of an instrumentation package within a large conglomerszte
of programs. It was found that the instrumentation package was a
very useful tocl for debugging FCRTRAN programs. Previous
packages, however, did not make wuse of prior knowledge of &
program's execution (i.e., the program's history). This meant that
when the instrumentation was enabled, every program (in the 1larger
system of programs) was traced, even if the program was fully
tested and debugged. In certain cases, this also meant that a
large amcunt of paper was used to print out the instrumentation

tracing.

Instrumentation (Lebug) package -- E

With this in mind, we thought it wculd be useful for 3
program, that has worked successfully for periods of time, to nct
participate in the instrumentation tracing while the package was
enabled. To do this, each program's "history" would have to Le

monitored.

In the OLPARS instrumentation package, all programs are
iritially assumed to be "successful" programs. Since there is no
"history" for new programs, this assumption must be made. However,
if that program fails in its execution (i.e., it is not a
successful program), its "history"™ will now indicate this fact.
Further wusages of the program will cause tracing to be seen (cnly
while instrumentstion is enabled) until the program hzs completed
successfully some arbitrary number of times. Cnce the program
completes this arbitrary number of successful executions, the

tracing will again disappear.

With this method of program tracing, a programmer will not
need to worry about programs that have good "histories". It will
also keep the tracing to a minimum, thus, focusing a programmer's
attention on the problem areas of a program. The programmer will
not have to wade through piles of program tracing (a definite

savings since paper is an expensive commedity).

204

Instrunentatior (Letug) package -- L

E.2 Using the Instrumentation Fackage

Tc use the instrumentaticn package properly, & program sheould
ineke reference to a few cof the instrumentaticn prcgrams in the

fcllowing manner.

In the "mein" program, befcre any disk files &re <cpenec,*®* =z
single c¢&ll should be made to the instrumentation initializaticn
routine (INSINI). This routine is used to enable c¢r disable the
instrumentation ©package for the current operation of the "mzin®
program, initislize various instrumentation veriables, and open two
instrumentaticn informaticon files. Before the "main" progrem

exits, it should make @ call to INSRET.

All subprograms** ¢of the "main" program should make calls tc
the instrumentation subroutines 'INSPGM' and 'INSKET' zfter entry
and upon exit to the subprogram, respectively. When tie
instrumentation packge 1is enabled, these two prcgrams print out
subprogram entrance and exit messages on the instrumentaticn
listing, control the debug printout indentation, and keep track of

the "history" of each subprogram.

» The reason for calling 'INSINI' before files are opeaed 1is

explained 1later 1in "Some Notes about Instrumentation Fackage
use cn RSX-11M.

®* There are a few programs that cannot make «cells to the
instrumentation package (because they are used by the

instrumentation package; hence, infinite recursion would
occur).
205
o e o ——— N N :T;EZ T

Instrumentation (Cebug) package -- E

The abcve-menticned steps are the only mendatory prcocedures tc
be acdhered to fcr proper uszage of the instrunentation package. The

variable-printout (dump) cells to the instrumentation r[packa

o]

e may

be done &t any time after the initializeticn rcutine (INSINI) is

called.

E.3 The "Eistory" aspect of the CLPARS Instrumentation Fackage

W)

Throughout the source ccde of the instrumentation package
there is mentioned the concept of & program's "history." The stcred
infcrmation necessary to keep tally of a program's successful

cotipleticn is called & pregram's "history."

Each CLPARS program (not found in the instrumentation package)
will have 1its cown history reccrd which will be found in an CLPARS
"history" file.® The history record will contain the name of the
program, the length of that name, a tally requesting the number of
times this program is to report its usage after fsilure, and an

overflow link record pointer (see Figure E-1).

The "history" file is initially created by 'GEN', the CLPARS
"fixed" files generating program. The header portion of the
"history" file contains the record number of the first available

overflow record in the file (see Figure E-2).

Under the RSX-11M operating system, the file is named 'HS.CLP'.
within CLPARS programs, the history file is referred to thrcugh
its two letter mneumcnic, 'HS'.

206

Instrumentaticn (LCebug) package -=-
CLPARS RISTCRY FILE RECCR

- - T G - P G T G D D W Gy @ e T D WD Gy G G Y S G G e e AP P G R W Gn WS e @R

1)) 1

] [] + t

Cverflow | ! llame ' i
Link i Tally |] Name i
Pointer | ! Length | i
\ \ ' i

~= T rel =lcecwa-- 1 rel ¥ cecceo jemeae 2 rels ~-w-- |

* Real element; under RSX-11M a 'rel' is composed
of two~16 bi% words

Figure E-1 OLPARS History file record

207

L

Instrumentation (Lebug) package ~~ E
CLFARS HISTCRY FILE

' First Available overflow record
i

numter (points to end of file) Header
!====zc===z=z=zzz====zz==zx=zz=zz=z==z=zx=c=z=z|
: HISTCRY RECORL i
1]
[Bt esh st 5t i dib et dendeaden bt st adbai s sk edn e i 1
! HISTCRY RECCRC H
R e et L T TS |
i i
. :
] . i
i i
] . \ Primary
i { Region
: . i
1]
]]
]]
] !
)]
1) i
R e e L DL e L P e |
H HISTCRY RECCRL '
l=========3s=zzz2=z=zzzzc==zsz=z=zz=zzz=zz=z==z|
' OVERFLCW HISTCRY RECCRD i
HER e D T T ! Cverflow
' i Region

- e D L L P R TS CP D AL W - e S o = e -

Figure E-2 OLPARS History file

208

l Instrumentation (Lebug) packsge -- E

Initisily, the "history" records have their 1link pcinter,

telly and neme length set tc zero.

The "history" file can be c¢cnsidered & '“"hask": tzble. £
program's "history" record 1is found by "hashing" the nzme of the
program, using the resultant rnumbter as & pointer ints the history

file.

If twe program names "hash" to the same history file record

nunter (called colliding), then the link pointer of that record
number is set to point to a record 1in the overflcw area. This
cverflcw record beccmes the history recerd of the second program.
Arother collision to the same record number by &enother program
wculd result in the link pointer of the first colliding program to
Foint to a new overflow record. This process would be repeated for

each new "hash" collision (see Figure E=3).

The "hashing" function being used is a slight modification of
the divisicn remainder algerithm found in most simple hashing
routines. Tc keep collisions to a minimum (thus, file access),
this algorithm requires that the number of entries in the table be
prime, (Further details of the algorithm c¢can be found in the

CLPARS Software Reference Manual under the program name "EASH",)

¥ "Hashing™ refers to the concept of mathematically combining the
internal representation of a character string to create s
single number. The resulting number is wusually used as a
pointer into some table.

209

Instrumentation (LCebug) Fpackage -- E
OLPARS HISTCRY FILE

Header P23 i
{====z==z=zz=z=3z=z=z=:=:2|
17 20 A | Programs in existence
|m————— e H with history records
2+ 0 : H are A,B,C,L,E, and F
jm————- e me e i where:
3. 0] F]
| —— |emcrcee—- f Hash(A) = Hash(E)
47 21 C H Hash(C) = Hash(D)
Primary jm————— R et ; Hash(C) = Hash(E)
Region 51 C ' H
|—————- leemcccae - ! That is, B collides
with A, while L and E
. collide with C.
jm————— | =m——————- i ;
191 0] i
l=s=z==s==z=z==z===
20 { O i B i
S, P !
Overflow 21 | 22 | D :
Region |em———— A H
22 1 O i E i

(Link) (Program)

N L
.

Figure E-3 Example of link pointer usage in
OLPARS History file

210

Instrumentation (Debug) peckage -~ E

The tzlly portion of the history recorc 1s wused to decide
whether or nct any debug information is to be printed when the

instrumentstion package is enabled.

Z.5 The Life of an CLPARS "History" Eecord

When the instrumentaticn package 1is enabled, the following

steps occur for the subprogram "“EXAMFL".

The subprogram "EXAMFL" is currently being executed. Its rame
is "hashed" and the resulting record number points tc the history
record for "EXAMPL". The record is read frcm the '"history" file.
It is found that the name length of the reccrd is zero. Therefore,
this is the first time "EXAMPL"™ has ever been used within the
context of <the current “history" file's existence. The name,
"EXAMPL", alcong with its corresponding length, is placed within the
record. the tally porticn of the record is set to the current
velue of the tally (zero, because it 1is a new record) plus =&
specified tally increment. This information is saved within the
instrumentation package and is also written into the history file.
Consequently, if some error causes "EXAMPL" to abort its execution
(or if it is forced to abort by the operating system), the tally
within the "EXAMPL" history record is a nonzero positive number.
The nonzero tally indicates that "EXAMFL" failed. The value of the
tally represents the number of times (only while instrumentation is
enabled) "EXAMPL" must be entered and exited successfully, before

debug printout (trace) for "EXAMPL" will stop.

211

Instrumentation (Debug) package -~ E

If "EXAMPL" has no "zbortive bugs," just prior to exiting, the
tally of 1its history record (fcurnd in the 'HISTRY' commcn zrea cf
the instrumentation package) will be effectively decremented by one
(or set to zero when decrementing results in a negative tally).
Then the record will be placed into the appropriate place within

the "history" file, writing over the old version of the record.

E.5 Instrumentation Package Programs

The following two sections describe the program modules of the
CLPARS instrumentation package available for programmer use. The
first section describes the "necessary"™ instrumentation progranms.

An example "usage" is given for each program.

E.5.1 Control tracing and "History" maintenance progranms

INSINI - Instrumentation package initialization, used to
determine whether or not the instrumentation
package is to be enabled or disabled for the

current execution of the program calling INSINI.

CALL INSINI (Name)

where "Name" is a Hollerith string containing !
the name of the program calling INSINI. {(Name

should not exceed 9 characters.

212

Instrumentetion (Letug) package -- T

Example: CALL INSINI('CCHECL')

ILEFGH - Instrumentation package progrezm entrance mcniter,
used to indicate that the currently executing
program has just been czlled (i.e., 2 call to
this program should be the FIRST executatle

statement in a subprogram).

CALL INSPFGM (Name, FgmTyp)

where "Name" is a Hollerith string ccntaining
the name of the program czlling INSPCM (nzme
should not exceed 9 characters). "PgmTyp" is
an integer specifying whether 2 progrem is of

type "MAIN" (=z0) or of type "SUEFRCGRAM"™ (=1).

(EIG NCTE: 'INSINI' calls 'INSFGM', for the

user with "PgmTyp" set to "MAIN". Therefore,
the user should not call 'INSPCM' in the

"main" program where 'INSINI' is used.)

Example: CALL INSFGM ('GHXTHND',1)
CALL INSPGM ('EQUALA',SUBPGM) 1

Instrumentaticn (Lebug) pasckage -- E

—

[#5]

w
w

m
—3

Instrumentaticn rackage exit meritor, used tc
indicate thet the currently executing progrem
is zbout toc exit (i.e., & cell tc this prcgram
shtould te the LAST executed stztement in thre

callirg program).

Exemple: CALL IHNSRET

Sets instrumentation package to a desired stete,
either "cn" or "off". The previous state of the
instrumentation package is returned to the

¢zalling program.

CLSTAT = INSSET (liwStat,Thresh)

where "hwitzt" is the new stzte of the
instrumentaetion package {true = Cl, fzlse = OFF);
"Thresh" is an integer value regpresenting the
new debug printout threshold. Upon return,
INSSET will return the old state cf the
instrumentation package ass its {function value

end set "Thresh" to the previous threshold value

of the package.

Example: THRESH

3

CLSTAT

INSSET(.true., THERESH)

214

R

Instrumentaticn (Lebug) fpackege --

E.5.2 Variagble trace programs

INSCLR

Prints cut the velue ¢f & cheracter
string variable (i.e., prints cut
characters stored in an integer array,

one character per integer).

CALL INSCHR (llame, Value, Length)

where "Name" is a liollerith string
containing the name of the variatle to
be printed (or some pertinent descrip-
tion); "Value" is the address of the
variable to be printed; "Length" is the
number of characters to be printed,
when zero, the last character in the
string must be followed by & zero, the

end-of-string symbol.

Example: CALL INSCHR (*'CHAR', CEAR, 10)

CALL INSCHR ('Tree Name', THNAM,

215

c)

r

-

.|

instrunentaticn (lebug) package -~ E

ILSLEL - Frirts cut the vzlue of a double precisicn

flcating point varicble.
CALL TINSLEL (liame, Value)

where "khame" is z hollerith string ccn-

N

taining the name of the verieble to be
printed; "Value™ is the address of the

double precision veriable to be printed.

'A'“u;‘..

Example: CALL INSCBL ('CCRREL', CCRREL)

INSFLT - Prints out the value of a single precision

floating point variable.

CALL INSFLT (lizame, Value)

where "llame" is z Hollerith string ccn-
taining the name of the variable to be
printed; "Value" is the address of the

single precision variable to be printed.

Example: CALL INSFLT ('FAST', FAST)

RS

hila

INSINT

INSLCG

Instrumentetion (Lebug) packsge -- E

Prints cut the value cf the integer variable.

CALL INSINT (lieme, Value)

where "lame" is a liollerith string ccn-
teining the name of the variable tc te
printed; "Value" is the zddress cf the

integer varisble to be printed.

Example: CALL INSINT ('LENGTE OF KANME', I)

Prints cut the value of a logicel variable.

CALL INSLOG (Name, Value)

where "Name" is a Follerith string con-
taining the name c¢f the variable to te
printed; "Value" is the address of the

logical variable to be printed.

Example: CALL INSLOG ('FIRST TIME FLAG', FRSTIM)

217

ﬁ‘

i .

s L T

Instrunentetion (Lebtug) peckage -~ E

E.{ Sore hetes Lbcut Instrumentation Fackage Use on REX-11H

The irnstrumentaticn package hzs its cwn cedicated lcgiczl unis
(for cutput) so that & pregremmer hes tre zbility te cdirect the
debug cutput to various ccmputer vperipheral <cevices (cisk, 1lire
grinter, terninezl, etc.). hormelly, urder ASX=-114, the
instrumentaticn package puts its output ontc the "syster"™ disk irn
the file 'INSTRU.LAT'. This can be modified during the task build
(linking) stage (see ASC parameter in ESX-11H task build manuel) cr
immediately pricr tc program execution (see REA commend directive
in the RSX~11M operator's procedures menuel). Note alsc thnst if
the cevice 'XAC:' is defined, '"INSTRU.LAT' will be placed cn that

device instead of the "system" (SY(:) device.

The logical unit used in CLPARS will be 1logical wunit numbter
tvwo. This logicel unit assignmenrt will nct be guaranteed, hcwever,
unless pregrammers call the instrumentztion initielization routine
(ILSIKI) tefore any other files are cpened. In generzl, it would
te a good practice to make a call to 'INSINI' the first executable
statement in an CLPARS "main" program. This convention 1is
necessary because logical unit assigrment to files orened within &
program cre dcne on a first-come, first-served basis (Logical unit

twec happens to be the first unit in the list of availstle logical

units). If the convention 1is nct fcllowed, a programmer who
desired to redirect the debug output wculd have tc figure out, for
each program written, tc which logical unit the instrumentation

packege was attached.

218

"""""""""-..lllll-llIll.l.-'lll---...-........-..,__.,___,______“

e

AFPENDIX F

CLPARS RSX11M I/C Notes

F.l Access tc CLPARS User's Files

All access to any of the CLFARS User's Files .ill be obtained
through the level II/level I manipulation and access rcutines (see

Figure F=1),

F.1.1 (Fixed Files)

The level Il manipulation routines, CPENFX and CREAFX, "know"
the size of the headers and logical entries of &ll1 the fixed files.
To open the files, these two routines call the 1level I rcutines,
OCFEN and CCREAT, respectively. OCFEN and CCREAT retrieve/insert
the system pointer (i.e., the system file name) to the fixed file
from/to the File Code Table file, via the fixed file's file code.
(The file codes for the fixed files are predefined to bte the values
1 through 10). COPEN and CCREAT then open the file and fill in the
appropriate information in the File Access and Control Teble
(FACT). Cnce the FACT is filled in by the manipulaticn routines,
the CLPARS fixed files can be accessed by the 1level II access

routines, through the level I access routines, FGET and FFUT.

CLPARS I/C notes (on REX-11M operating system) -- F

F.1.2 (LCata and Logic Files)

The level Il manipulation routines CFENTR &and CREATR ‘"kncw"
the size of the headers of a user's date and logic files. They
must, however, calculate the size of a 1logical =entry in tlrese
files., The dimensionality of the data set, used to create the data
or logic tree, is all that is necessary for this calculation. This
information 1is stored in the Tree List and Logic List files, zlong
with a tree's file codes, which are used to retrieve (frcm the File
Code Table) the system names of the files that are used to simulate
the CLPARS tree. The files are opened by either CCPEN or CCREAT.
From this point, operations continue as mentioned under "Fixed

Files.”

F.2 OLPARS Block I/0 (File Access and Control Table) lotes

Currently, the file access and control table has the
capability to have fifteen block I/C files open at one time.
However, the entire FACT is not allocated at compile time. The
reason for this was to save task space. The FACT was broken into
two FCRTRAN common areas. Everything btut the Fhysical Record
Buffer (PRBUFF) area was put in the common area labeled FACT. The
Physical Record Euffer was placed in its own common area, called
BLKEUF. The portion of the file access and control table that is
in the FACT common area has enough space for the fifteen cpen
files, as mentioned above. The ELKBUF commocn only has enough space
allocated for one block (256 word) buffer. (These allocations are

compile time allocations).

Latl

CLFARS I/C nctes (on ESX=11k cperating system) =-- F

ﬁ The ELLELF areez can be extended at task build (link) time Ly

using the task pbuilcer EXTSECT cirective. This gives & prcegrenmrer
the ability to specify, exectly, the rnumter c¢f tlock I/C buffers

(maximum = 15) to create, acccrding tc the number c¢f files (tc te

accessed using block I/C) tiiat are opened at any cne time. (See

CLPARS command task building notes fcr ESX-11¥, in section rF.5).

The PREUFF is separated from the FACT solely for the purrose
of adjusting its size zt task build time (because this was the cnly

way it could be dcne).,

F.> CLPARS Record I/0 Notes

Terminal and sequential file access is done through RSX-11's
record I/C facility. RSX record I/0 has a buffer region that
corresponds to the CLPARS block I/0 buffer, BLKBUF. The buffer is
called $¢FSR1. This region's size is also controlled at task build
time, like the ELKBUF region. 1In this case, however, the region's
size 1is contrclied by the ACTFIL task build parameter, instezd of

the EXTSCT parameter.

221

CLFARS I/C notes (cn ECX-11M coperzting system) =-- F

F.& CLFARS File I/C Communicaticn Faths

Figure F=~1 shcows the rueleticenship of ccecmmunicatiorn tetween
CLPARS prcgreams, files, and detes aresas. Folliowing 1s an

explanaticn of the [ligure.

F.t.1 (Lcgical Unit Allccation)

There is & glctal common area within CLPARS which <contains
centrolling information about the a&allocatiorn of 1logicel unit
rumbers for both record and block I/0., The area 1is described zs
the currently available logical unit numbers teble (CALUN). The
tatle contsins informetion atout 15 logieal unit numbers. Logical
unit numbters are dispensed, upon request from the "get lcgical unit
numter prcgram" (GTLUN), on a first ccome, first serve basis. GTLLURN
searches the table from bteginning to end for a free unit. 'Wwhen cne

is found, GTLUN marks the unit as being used and returns the unit

numter to its calling program.

Logical units become "free" or available when the M"release

logical unit number program (RELUN) marks a unit for reuse.

The purpose behind this type of logical unit aliocation was to
free the programmer from "worrying" about which logical units could

be used when opening a file.

222

WITXSY 1o syied O/I STTId SYVLIO

n. C e s e s e s e st e 6 e en s e aee e s en vt s e e e WW‘——&ID :-“:“”g .||—
: 189044nS 09

: (1-4 3n914) sWwvyooud -] -4 _
: svawv viva - () $S320V 11 13AD) I _
: SYuy — _

. VIVQ ¥04 SHILIWVEVA NOTLVIOTIV G1INd ASVL -() |
: *SNLY NOTLVINGINWW 3714 LHOddAS -~ ¢ $$320v 1 13A11 _
: *SNI¥ NOLLVININVW 314 11 T3ATT - 2 r o
: *SNLY NOILVINGINWW 3714 1 V3ATT ~ | 300V vaiva - L
: *SNLY¥ NOTLYINAINVW 3114 13AIT - Sttt 0 Al i _

: o . 401dI1¥IS30 |
: - N - | _
: L (IND4NEY=1vd189) wa]

” o/1 iy 0/1 %3078 (1351X3) WI1901 ~— |
: — Y 44ngud |
: (11410v) | auod3y | _

: 10v4 _ |
N | Tusass 14 T | _
[N ,) Ll -1 _
. <> | a1 I |

Lot 0 : : 1! ¢ wivawd _
104 1vaudd : l 1

(SLINN) e iee e o ¥IN3IJO
FELOT TR e ...o] N3do3 wawo) - J |
10dwWYL 1A308$ N3d0O | X4v3¥) |
—
IVIUIA _ X4N3dO |
nadon L Jf onaao m _
) L
NYIVD NATLY $3501) | _
NNI3IY] ’ |
0

5012 350100 |-+ “”M”“w SR

223

"'lIlllIIIl-lIIlll-!llu-llllIl-'nllg-ll!Il......'-'--n--u---——nnnuuu_ - -_1‘

CLFARS I/C notes (cn RS¥X-11M orpercting systern) -- F

F.b.2 (Elock I/C:

A ccmmenc prcgram that sccesses an CLFAFRS user's fixed cdete or
logic files must first call the appropriate level Il "cpen" rcutire
(i.e., CPELTE or CREATE for tree files, CFENFX or CREAFX fcr fixed

files). If a tree file is being cpened, informetion about the file

nust be retrieved from (or placed into when creating) the Tree (TL)
or Logic List (LL) file. From this point, all remaining sctions
occur for both tree anc fixed files. The level II "open" routines
call the 1level I “"open" routines. They, in turn, cpen the File
Ccde Table and retrieve the "system"™ file name(s) c¢f the file(s) to
be c¢pened. The 1level I open routines call the level zero* block i
I/C cpen routines (FCFEN, FCREAT) to actually open the "system"
files. These routines request a 1logical wunit runiber frcm the
availsble pool ¢f numbers (as mentioned above) znd open the system
file, which causes system file information to be placed intc the

device table ($$DEVT) . **

* Level O programs mentioned here are RSX-11M assembly programs
that communicate with the operating system directly for
opening, closing, reading, writing, etc. of a file.

oy ——

#%* The logical unit number is used as an index pointer into the ,1
device table. '

-4

224

CLPARS I/0 notes (on ESEX-11M oreratirg system) -- F

The lcgical unit number is returned tack tc the level I "cpern"
routines. The "cpen" routines locete z free file cescrigter withirn
the File Access and Control Teble (FACT), througr <the “get file
descriptor program" (GETFIL). Cnce the file descripter is
cbtained, the lcgical unit numbter, alcng with cother <cpprogpriate
informatiocn, 1is placed in the FACT. The level I "cpen" rcutines
return to the level II ‘*open" routines the vezlue <c¢f the file
descriptor, which 1is subsequently given to the upper level and

support/command pregrams.

Cnce the files are opened, they can be accessed by the command
programs through the level II, level I, level C path of prcgrams.
The level I access routines (FCET, FPUT) use the previously stcred
file access information in the FACT to direct the level zero
routines. The level zero routines perform the actual tbtlock I/C
access c¢f the HRSX-11M system files. The routines plzce/retrieve
those blocks into/from the Fhysical Record Euffer area (PREUFF) 1in
the FACT.*

To close the CLPARS block I/0 &accessed file, one of the
appropriate 1level II "close" routines (CLOSTR, CLOSFX) is called.
The level II "close” routines pass the file descriptor to the level
I close routine (CCLOSE). It obtains the logical unit of the file
to be closed from the FACT and calls the 1level OC <close routine,

The "system" file is closed (this clobbers information in $$DEVT)

The PRBUFF is not actually contained "in" the FACT, but is
considered part of it.

225

CLFARS I/C notes (on KSX-11M operating system) -~ F

and the lcgical unit is merked "as esvailable" in the 1logical wunit

pool.

F.4.3 (Reccrd I/C)

A cemmand program that accesses the wuser's terminai simply

uses the terminal I/C package (TRMGET/TEMPUT). Internally,
however, the terminal access programs can "sense"” when their
special logical wunit** has been opened or not. When the unit is
closed, TRMGET or TREMPUT makes a call to the terminal cpen routine
(TRMCEN, found in the 1level 0 file manipulsation routines). The
"system" then places information about the file (terminel) into the
device table ($8DEVT). The terminal rcutires now have the sbility

toc access the terminal.

To access an RSX-11M sequential (variable length record) file,
the command or support program must first cpen the file with the
suppcrt file "open" routine (OPENS). The support routine calls a=a
record I/C level zero "open" routine (VOPEN, VCREAT) to perform the

actual "system" open.

As in block 1/0 "opens," the level =zerc ‘'opens" requests =&
logical wunit number to use and performs the "system open," which
fills in the device table. This wunit number 1is transferrec
directly back to the program that requested ¢the file to be

"opened". The sequential file access programs (FILGET, FILPUT) can

% Jogical unit 1 has been reserved for terminal I/C and is not
found in the currently available logical unit table.

226

CLPARS I/C nctes (cn REX-11 operesting system) -- F

ncw access the cpered file. (Infcrmation is buffered in the $SFSRD
regicn for both the terminal access and sequentiel file access

prcgrems).

To close a sequential file (thus, flushing its buffer), the
support file manipulation "close"™ routine must be called. This
routine calls the level zero close routine, which closes the file

and releases the logical urnit number in use.

F.5 CLPARS Command Task Euilding MNotes for RSX-11M

Lisregarding the possibility of programs being "ovérlaid," the
following RSX parameters will be used when task tuilding (linking)
an CLPARS command program. They are:

ACTFIL, EXTSCT, UNITS, GBLPAT, and ASG

where,

ACTFIL - specifies the number of record 1/0 files to
be cpen at any one time. This parameter
rezulates the size of the record I/0 buffer
region ($$FSK1).

EXTSCT - 1is used to control the size of the block I/0
buffer region (ELKBUF).

UNITS - specifies the total number of files open at
any one time (that's both record and block
I/0 files). This parameter controls the

size of the logical unit device table regior
($$DEVT).
GBLPAT ~ 1s used to specify the numter of btlock

227

it

3
Rk Bt i B U e s e . itk O it B ML

CLPAES I/C nctes (on RSEX-11M operating system) --

buffers allocated., The use cf this
parcmeter will help protect the programmer
when develoring and debugging a new program.
It will prevent him from clcbbering
(writing over) data areas outside the blcck
buffer region (ELKEUF).

ASG - 1is used to assign logical units to

particular devices at task build time.

'-ll--I-II--I-lI-.-l-lIHI..-I!ll-FUl..I..-ll-""-llﬂmﬂw-u-n-m_

CLPARS I/0 notes (on RSX-11M operatirg system) -- F

The follcwing is an exzmple of & task build ccmmand rile fer
tuilding & non-overlezid CLPARS command. f[or more detail, refer to

the RSX-114 task builcder manual.

PRCGRAL/CF/FF=PRCGRKAM,[213

y L2 -t’.—

Z2]JCLPARSLIE/LE

’
; PRCCRAM - name of the CLFARS commend being built

H 3

] 4
;/CF - mezkes task checkpointable, so it can be swapped out of ’
; memory in a multi-user environment.

/FP - tells task builder that the flosting point processor
H is used by the task

;[312,32]OLPARSLIB/LB - the CLPARS subprogram library,
which haprpens to be in directory [313,322]

N s we e e

;There is one record I/0 file open in PRCGRAM,
ACTFIL = 1

e

;There is one block I/0O file open in PRCGRAM.
EXTSCT = BLKBUF:1000
GELPAT = PRCGRAM:BUFCNT:1

1

;llote: PBoth numbers in the above parameters are octal. ELKBUF's

size is in bytes. It should be extended (for more block

I/0 files to be opened) in increments of 10C0 (8) or

512 (10). If neither parameter is used above, it shculd

be known that there is one block buffer zllccated at

compile time (i.e., ELKBUF has 512 (10) bytes allocsted f
and BEUFCNT is set to 1).

There are a total of two files opened at any one time in FRCGRAI.
Currently the maximum number allowed is 15.

UNITS = 2

H

; Logical unit 1 shculd ALWAYS be assigned to the terminal device.
; The remaining logical units are assigned to the "system" device.
/950 = TI:1, SY:2

WO We Wwe WS W WS WA We Ve e we

APPELCIX G

OLPARS Programmer Aides

The following pages contain information on how to use the
CLPARS programmer aides. The current programmer's zides asre CEHN,
INSESP, MAKCPT, CDTCMP, and OLTCMP. GEN is used to generate a new
CLPARS user directory (see APPENLCIX <), expand &an c¢ld
user-directory, or give a list of the number of trees & user |is
allowed. INSHSP can be wused to activate or deactivate debug
print-cut of specific programs when program instrumentaticn |is
present in the task and turned on. MAKOPT is used to create the
OLPARS option file (see Appendix B). CDPTIMP and CLTLMP can be used
to dump the structural content of an CLPARS data or logic tree,

respectively.

The format of the aid descriptions 1is 1identical with the

OLPARS User's Manual format.

230

™

B e e

CLPAES Programmer hLides == G
GEN

[®]
m

CCMMALD KAME:
CATECCRY: Programmer's Aide (system dependent)

FULCTICLKAL CESCRIPTION:
The CEN utility creates all the necessary CLPARS 'fixed’
files that are required by an CLPARS user. File headers
are appropriately initialized. GEN also sets up the File ¥
Code Tsble, which specifies the total numbter of trees
(cata/logic) that an CLPARS user is allowed to have in
his directory. The user has the additional options of
expanding his tree capacity (allow for mcre trees) znd
of printing cut his tree capacity (list out the numter
of trees zllowed, the number of trees currently existing,
and the remaining number of trees allcwed).

USER INTERACTION:
There are three possible ways to run gen:
1) GEN<er>
2) GEN ‘'switch' <er>
2) RUN GEN<er>
1 and 2 above assume that the GEN task has
been installed. (INS GEN/TASK=...GEN)
GEN takes the following switches:
/NW:n create a new user with a tree capacity of n
/EX:n expand an old user's tree capacity by n

/LI print ocut a user's tree capacity

CLFARS Programmer Aides -- G
CGEN (ccntinued)
EXAMELE(S):

Three examples of CEl sessions will be giver,
one for each methed ¢f running CElL.

1) Session when user types CEli<erD

/GEl<er>/

GEN>/ /LI<cr>/

USER'S TREE CAPACITY = 10

THE NUMEER CF TREES EXISTING IL THE USER'S CIRECTCRY = ©

THE REMAINING NUMBER CF TREES THAT THE USER IS ALLCWEL
= 1C

GEN>/<cr>/

2) Session when user types GEl ‘'switch' <cr>

- - —— - - S G W - D - S S e o - -

/GEY /EX:20<er>/ (the outer-most slashes mark user
response)
>

3) Session when user types RUN GEli<er>

-t G > D - Ty G Dy G5 D = - S = = -

/RUN GEN<er>/

TO EXPAND A USER'S TREE CAPACITY, TYPE /EX:N
WHERE N IS THE NUMEER OF TREES BY WHICE TC
EXPAND A USER'S TREE CAPACITY

TG CREATE A NEW USER, TYPE /NW:N
WHERE N IS THE NEW USER'S TREE CAPACITY

TO PRINT CUT A USER'S TREE CAPACITY, TYPE /LI

//NW:50<cr>/ (the outer-most slashes mark user response)

>

'
)
H
:

CLFAKS Progremmer ALides -- G
GEN (ccntinuea)

(lCTES: 222X XX EZEEZXRRRAZESZREREER RS R ER R R X

If the user .ypes tne switches to create or
expand an CLPARS directory (/EX:n or /hkh:n),
and CEN completes successfully, no messages
are printed at the terminal.

Running GEN by typing GEN<cr> zallows the user

to run as many GEN options as he wishes. After
each option has been executed, the prompt 'GEN>'
is put out at the user's terminal. He can then
type in another option (switch), or type a
carriage return or a control-Z to exit. Running
GEN using either of the other two methods (RUN
GEN<cr>, or GEN 'switch' <cr>) only allows for
one option to be executed. After execution of
the option, GEN halts and the MCR prompt (>)

is put up at the user's terminal.

In the examples above, the expression / /LI1/
means that the user typed "™ /LI".

Typing a space before a switch or before a
carriage return is optional.

l***!**!*************i************************)

CLPAKS Programmer Aides -- G

TLSHSE
CCMMALL NAME: INSHSF
CATEGCCRY: Programmer's Aide

FUNCTICHNAL CESCRIPTICN:

INSHSF (Instrumentation History file Patch) can be useaq
by an CLPARS programmer to activate or deactivate [
instrumentation for a selected set of CLPAKS sutprograms.
This can help keep the amount of printed informatiocn in
the instrumentation output to a minimum.

USER ILTERACTION:
User 1is askecd:

1. for the name of the file containing names of
programs to activate or deactivate in
instrumentation.

4-“‘1

2. to 'activate' or 'deactivate' given programs
EXAMFLE(S):

A file (CLPPGMS.TXT) has been created containing the
names TLSRCH, GAREND, ECUALA, and OPENTR on separate
lines (upper case letters are important). The program
CLEFAULT has been executed to set the instrumentation
'CN' and set the instrumentation threshocld to five
(this will silence the other succesfully executed
programs) .

TYPE IN FILENAME CCONTAINING NAMES CF
PRCGRAMS TC ACTIVATE/DEACTIVATE - /OLPPGMS.TXT/
ACTIVATE OR DEACTIVATE (A/D)? /A/

(PRCMFT NOTES: ®®SSNtuMXussssaarstraiieexeaeeanenns

If the next CLPARS command executed enters any of the
programs 'activated', then instrumentation will
appear for those programs. Note: instrumentation

may also appear for any programs that exceed the
current instrumentation threshold requirements other
than those specified thru 'activation’.

The program activation will last at least five times

the numbter of times the program name appears in the

activation file. So, if a program's name appears

once in the activation file, and it is successfully 1
: executed five times, then instrumentation will cease i

for that program.
l«ll*{**!l***************************i****!*****l****)

234

CLPARS Programmer Aides ~- G
MAKCET

CCMMALLC NAME: MAKCFT

CATEGCRY: Programmer's Aide (system dependent)

FUNCTICNAL LESCRIFTIGH:

—a——

MAKCPT creates the CLPARS option file (CPTICK.CLP)
within the CLPARS directory. MAKCPT uses the option
text file (CPTICN.TXT) as an input file. This prcgram
shoula be used only by CLFAKS programmers/meintainers
to create the proper option file. <See Appendix E of
this manual for a description of CFTICN.CLP and
CPTICK.TXT and for information cn future Cption

File Maintenance.

USER INTERACTICN: NONE

(NCTES: I ZZZXXXXXXXESRR2XZRSRE 2RSSR RS2SR 2R RS2 2R R 22

If for some reason MAKOFT cannot create the option

file, an appropriate error message will be printed :
at the user's terminal, and the program will exit. .

If the program completes successfully, the number

of program names processed is printed at the user's

terminal.

HRERERERRRRRERRRRERERBRRRRRERFRREERRREXRARRRERRRRERARR)

OLFARS Frogrammer Aides -- G

GLTLMF
CCMMALD NAME: CCTLMP
CATEGCRY: Frogra «<r's Aide

FUNCTICNAL CESCRIPTICHN:

The CCTLMP (OLPAERS Data Tree LCump) utility is used to
check *the structural integrity of an CLPARS data tree.

USER INTERACTICUN:
User types 'RUN <pathname>OLT"MF' to initiate the
program. <pathname> is whatever is needed to locate
the program.

Cnce the program is running, the user is asked for the
name of the CLPARS data tree tc be dumped.

NOTE: To use this program prcperly, you must be

'in' the CLPARS user's directory where the
data tree to be dumped is located.

EXAMFLE(S):
The tree ‘'nasal' is going to be dumped.
1) RUN DB:[{313,4C]CDTLMP
2) the program prompts the user with:

OLPARS DATA TREE NAME - /nasal/

236

et e =
Y I AP

3)

results in:

OLPARS Programmer Aides -- G

CCTLMF (continued)

STRUCTURAL LESCRIPTICN CF CLPARS TREE nasal

8

12
C
1

ENTKY TAELE

NODE

STRUCTURAL PICTURE FCR nasat

*% %%

WONONEWN =O

NAME

sQy

corn
oats
weat
Clov
alfa
rye

NCGLES IN TREE
IS VECTCK CIMENSIONALITY

NOLCES IN

IS SEHIOR LCDE SLCT Ik

FREE LIST

w

(%3}

ENTRY TAELE

-3

60

OCOOCOO0OO0OOOON

OOOO0OOO0OO0OOW

COO0OO0O0OOCOO0 0O &

CCUNTS
VCP LNC KID NL

et am wn e w en o et e s Sm e v EE e A e we o A A e e
- - R I R T

247
3C9
363

237

DVIGVEASEAVELV I DI AV I

8 9 10
8 € ¢
0 0 0
0 0 0
C 0 0
0 C C
0 0 C
C C 0
C C C
0 G 0
0 C C
INTETHKS

FLN LNL LNB

P R N N N
PR iG]

K % %k W ok W W {

It SO 00

1 30O 00

A

CLPARS FProgrammer Aides -- G
OCTLMF (continued)

(PRCMPT NOTES: S¥EMEEREEAEEREXRREXRREERRRRRRFARERN R AN 2

If you wish to exit from CDTLMP at the tree name
prompt, enter an empty line.

Following is an expansion of the abbreviated headings
in the counts and pointers table seen in the previous
example.

VEC - the number of vectors that 'lie' at the given
node.
VCP - the position of the vectors in the Tree

Vector file for the given lowest node.

LNC - lowest node count, the number of lowest nodes
beneath the given node.

KID - the number of children (kids) for the given

node.
NL - node level of the given node.
P - parent of the given node.
S - sibling of the given node.
FC - first child of the given node.
FLN - first lowest node of the given node
LNL - lowest node link, node following the given

node in the lowest node chain.

LNB - lowest node back link, node preceding the
given node in the lowest node chain.

Ii**i**********l***li***************l*********)

238

PO

oy vy

CLPARS Prcgrammer Aides -- G
CLTIMF

CCMMAND HAME: CLTLMP
CATECORY: Programmer's Aide
FUNCTICKAL CESCRIPTICN:

The CLTLCMP (OLPARS Logic Tree Lump) utility is used to
check the structural integrity of an CLPAKS logic tree.

USER INTERACTICN:

User types 'RUN <pathname>CLTLMF' to initiate the
program. <pathname> 1is whatever is needed toc locate
the program.

Once the program is running, the user is asked for the
name of the CLPARS logic tree to be dumped.

NOTE: To use this program properly, you must be

'in' the CLPARS user's directory where the ;
logic tree to be dumped is located.

EXAMPLE(S):
The tree 'EXAMPLE' is going to be dumped.
1) RUN LB:[313,40]CLTICMP
2) the program prompts the user with:

OLPARS LOGIC TREE NAME - /EXAMPLE/

239

CLPAKS Programmer Aides -~ G
CLTLMF (continued)

3) results in:

STRUCTURAL CESCRIFTION CF CLPARS LOGIC TREE EXAMEFLE

DESIGN LATA SET - EXAMFLE
CIMENSICONALITY - 4
CLASS CCUNT -4
NGDES
NEXT AVAILABLE(8) AT END CF FILE(S9) 1IN USE(6)
(NOLES IN FREE LIST 8 7)
CURRENT LCGIC NCLCE - U
REASSQCIATEL NAMES ~ NC
LV ENTRY SIZE ~ 12
INCCMFLETE NCDE CT.- &4

DES CLASSES PRESENT IN TREE, WITH A-PRIORI PRCBAEILITY
ABC C.z54 DEFG 0.254 CAT 0.288 SAND 0.203

CREATING
NCDE LCGIC CCMAND NL KID PP FC SB LVP RJP!OCNM RCNM MLF NCF PR.
... U
1 GRCUP L1IEIGV © 3 0 2 ©] bamce —eee 0 4 ALCS
2 GRCUP LI1EIGV 1 2 1 5 3 3 === ———— C 3 ALC
3 INCELT L1EIGV 1 0 1 0 &4 0 Qlacee =ee- 0 2 AL
4 INCPLT LI1EIGV 1 2 1 7 0 0 leeme ecea 0 3 ALS
5 INCPLT 2 0 2 0 6 0 0 3 ALC
6 INCPLT 2 0 2 0 0 0 leoee e 0 2 AT
STRUCTURAL PICTURE FCR EXAMPLE
1 (SENIOR NODE)
2
5
6
3
4
240

L e T PR U

CLPAKS Programmer Aides -- G
OLTLMP (ccntinued)

(PRCMPT NOTES: ®HEEBEERENEERERKERERRRRRRERRRER KRR N IR

If you wish to exit from CLTLMP at the tree name
prompt, enter an empty line.

Following is an expanrsion of the abbreviated heaaings
in the counts and pointers table se<n in the previous

example.

NL - node level (with senior node starting at zero)
KIC - number of children below a given ncde

PF - parent of the given node.

FC - first child of the given node.

SB - sibling of the given node.

LVP - decision logic vector pointer to LV file

.'.‘14;‘

RJP reject logic pointer to LV file P

CCNM original data class name (should have value when

only one class exists at the given lcgic node)

RCNM - reassociated class name (should have value when
only one class exists at the given logic node)

MLF - modified logic flag

NCP number of classes present

PR - class symbols of classes present at given node

RERRRGRRERRRRRRRRRRERERRERERRRRRFRRRXRRRRERRRRERERRNR)

241

L AFPENCIX L

CLPAKS Parameter Limits

This appendix defines parameter limits (minimum &and meximum

i

values) for parameters used in CLPARS. These parameters can be i
utilized by including the appropriate declaration file in the
source program. The parameters are first grouped accerding to

alphabetical order. Their ‘'location' (the file 1in which the I

parameter can be found) is determined by attaching a file <type>

name of '.LCL' to the name given in the 1list (E.G., SCREEN.LCCL).

The second grouping lists the parameters according to the file in
which they reside. ';
Parameter Value Location Lescription

- - G TP P G W G G TS Gn G LGN WP Tm G R WD W A - - - o ek - - e -

A 7 SCREEN index to the x-coordinate of
the lower 1left point of the
display rectangle

ACCESS 0 DISPLAY indicator that an item is to be
read from a display file header
ALIFLG 7 LIHDR alias flag
ALPHA 1 CHARTYPE used when characters in name !

can only be alphabetic i

ALPHNM 2 CHARTYPE used when characters in name 3
can be alpha-numeric

ANGLE 0 DISPLAY dummy angle parameter for btmap
routines

242

Parameter

Value

Location

OLPARS Parazmeter Limits -- H
Alrhabetized

LCescription

- G D D D PP P TR A D G AR D D R D S G D P S P e WP D D D D D P TR MR R G P R W R G G D D P D D S AR G G Gn G G P e e

ANYCHR

AFPENLC

EMPSIZ

BFET

BUFSIz

CAPSIZ

CLPEMS

CLSEMS

CLSLBN

CLUSTR

CM
CMDLEN

CMHNE

12

128

12

10

97

CHARTYPE

STAKNDARL

SCREEN

BITMAP

TIFILE

FACT

SCREEK

TIFILE

RNKORD

RNKORD

LCGTYPE

CISPLAY

FCLCS
STANDARL

LENGTH

used when any printable ASCII
character (PASCII), E[IGIT, or
LETTER is allowed in an
identifier

open-for-writing-at-the-end-of-
the-file indicator

index to the y-ccordinate of
the 1lower 1left point of the
display rectangle

the size of the classes present
bitmap on PLCP-11 machines (when
the maximum number of c¢lzsses
is equal to 50)

the back pointer to the entry
table slot number of a node

physical rececrd buffer size (in
real elements)

index to the x-coordinate of
the upper right point of the
display rectangle

the size <¢f the counts and
poincers region of a TI node

class pair by measurement type
of ranking

class by measurement type of
ranking

closed decision boundary logic
nodes

the display code for a
two=-space cluster plot

communications file code (FCL)

maximum character length of a
command

the length (in real elements)
of the communications file
header

CLPARS FParameter Limits -- H

Location

Lescription

Alphabetized
Farameter Value
CMLENE 0
| CCNMAT Y
‘ D 10
DATA 1
DC 1
CLSDIM 1
CDSNLN 2
DELETE 1
D1 4
DIGIT 2
CIHNE 1
CILENE 1
DINITM 17
DS 19
DSPCHk 8

LENGTH

CISPLAY

SCREEN

STANDARL

RNKORL

LIHDR
LIHDR

STANDARL

FCLS

CHARTYPE

LENGTH

LENGTH

DISPLAY

SCREEN

RNKORD

the length (in rezl elements)
of & logical entry of the
communications file

the display code fer a
confusion matrix display

index to the y-coordinate of
the upper right point of the
display rectangle

data tree indicator

the index in the LI file array
for the display code

design data set dimensionality

number of lowest nodes in
design data set

creating-a-temporary-file
indicator

display information file code
(FCL)

means character is a digit

the length (in real elements)
of the display information file
header

the length (in real elements)
of a logical entry of the logic
list file

the number of [I file header
elements referenced by
subroutines LIGHDI and CIPHCI

index to the distance between
succesive one space 'macro!'
display base lines

the index in the [I file array
for the ordered list of display
characters

Parameter

Value

Location

CLPAKS Parameter Limits -- Y
Alphabetizec

Description

CVLENE

CVNITM

ENMEAN

ECF
ECS

ERROR

EXMLIM

FCP

FIXEL
FKIDND

15

17

-1

150

16

LENGTH

LENGTH

DISPLAY

SCREEN

TIFILE

STANDARL
STANDARL

STANDARD

LIMITS

SCREEN

TIFILE

FTYPE
LISTRC

display value file code (FCL)

the length (in real elements)
of the display value file
header

the length (in rezl elements)
of a logical entry of the
display value file

the number of [V file header
elements referenced by
subroutines LVGHLCR and LVFHDR

index to the minimum
Xx-coordinate of & one space
base line

the first element number of the
means in the TI file

end-of-file cocde

end-of-string indicator for
integers

the standard error value
throughout CLPARS

the max imum number of
measurements allowed in a

vector in excess measurement
mode

index to the minimum
y-coordinate of a one space
base line

the code for accesssing the
first child pointer of a node

the fixed file type indicator
index to the first child

pointer of the current logic
node

CLFARS Parameter Limits -~ H
Alphabetized

Location

Description

FNAMEZ

FNMLEN

FREE

FRELST

GRFLCG

HC

HL

HCRLEN

HEALER

HELP

HGT

HS
HSHNE

13

34

13

17

-2

10

TIFILE

FACT

STANDARD

CALUN

TIFILE

SCREEN

LOGTYPE

SCREEN

SCREEN

OFTICON

STANDARD

STANDARL

DISPLAY

FCDS
LENGTH

246

the code for accessing the
first lowest node pointer

size (in words) of system file
name

the maximum length of an ESX-11
filename
value to indicate that a 'LUN'
is free

pointer to the next "inactive"
member in the free list (cne
past the current member)

index to the max imum
x-coordinate of a one space
base line

group logic nodes {(1-space,
2-space, boolean)

index to the number of display
units in character height

index to the number of display
units in display height

the length of a header record
in OPTICN.CLP

header indicator value to the
'FGET' and 'FFUT' routines

the standard help value
response from 'TRMGET'

dummy height parameter for
btmap routines

history file code (FCL)

the length (in real elements)
of the history file header

CLPAKS Parameter Limits -~ K
{ Alrhabetized

Parameter Value Locaticn Cescription

HSLENE 5 LENGTH the length (in real elements)
of a logical entry of the
history file

HSN 2 SCREEN index to the number of displeay
units in screen height

HSTBSZ 503 HISTRY historic file table size
(important: prime no.) :

IGNORE -1 DISFLAY indicator that an item 1is not
to be read/written from/to a
display file header

INCELT 0 LCGTYPE incomplete logic ncodes

INCI C DISPLAY dummy indicator parameter for
btmap routines

INITHR) # L STRY initial threshold value for -
debugging information

LCH 13 SCREEN index to the number of
characters per line

LETTER 1 CHARTYPE means character is a letter
(either UPPER/lower case)

LEVEL1 0 INSTRU initial debugging printout
level

LIFILE 3 FTYPE the logic information file tyre
indicator

LIHENE 272 LIFILE the LI header number of
elements

LILENE 22 LIFILE the LI logical entry number of
elements

LL 3 FCLS logic list file cocde (FCL)

LLHNE 2 LENGTH the length (in real elements)

of the logic list file header

LLLENE 25 LENGTH the length (in real elements)
of & logical entry of the logic
list file

CLFARS Parameter Limits -~ H
Alphatetized

Parameter Value Location
LNEP 10 TIFILE
LNCRNT 6 LIHLCR
LNLP S TIFILE
LOGIC 2 STANCARLD
LCWEST 6 LCGTYPE
LSTRSZ 7 LISTRC
LUNPTR 1 CALUN
LVFILE 4 FTYPE
LVHENE 3 LVFILE
LVLMIN 12 LVFILE
LVLCGK 6 LISTRC
LVNELM 8 LIHCR
LVRJCT T LISTRC
MACROC 5 DISPLAY
MAIN 0 INSCLEBL

LCescription

the code for accessing the
lowest nocde back pointer of a
node pointer of & node

current logic node

the code for accessing the
lowest node link

logic tree indicator

all lowest logic nodes in logic
tree (both complete and
incomplete) (lowest means, ‘'nc
children')

logic tree structure size

'LUN? pointer porticn of
*Luntbl’

the 1logic value file type
indicator

the IRY header number of
elements

the minimum length of a logical
entry in the LV file

Logic value file pointer index
to decision 1logic for given
logic node

number of elements in &an LV
file entry

Logic value file pointer index
to reject strategy 1logic for
given logic node

the display code for a
one-space macro plot

signifies to INSPGM that the
calling program was a ¢ 'main!
program

Location

m“ ”

CLPARS Farameter Limits -- h
Alphabetized

Lescription

MAXELY

MAXBIN

MAXBPT

MAXELUF

MAXCLS

MAXDIM

MAXFIL

MAXHSP

MAXLIN

MAXLUN

MAXMTR

MAXNAM

MAXOFT

50

50

50

15

20

133

15

10

15

LIMITS

LIMITS

LIMITS

FACT

LIMITS

LIMITS

FACT

HISTRY

STANCARD

CALUN

SMFILE

HISTRY

OPTION

max imum number of date
partitions (boundaries) zllowed
to te made on an CLPARS data
set

the maximum numter of "bins"
allowed in a one-space displeay

max imum numter of poirts
allowed in a two space bcundary

the number of physical record
buffers 1is originally set to
one but will be extended at
task build time

the maximum number of data
classes allowed within CLPARS

the maximum vector
dimensionality in CLPARS (cf
vectors not in excess

measurement mode)

max imum number of files that
can be open simultaneously

maximum size that the historic
stack pointer can

attain

the maximum length of an 1I/C
character string

maximum number cf avallable
logical unit numbers

the maximum numter of matrices
allowed ¢to be stored in the SM
file

maximum number of characters
allowed in an CLPARS

command (program) name

the maximum number of options a
program can have

OLPALRS Parameter Limits ~- H
Alphabetized
' Farameter Value Location Description
2 e b
1 MAXPGM 106 CPTICN the meximum numter of “program
' names"™ that can appear in the
CPTICN.TXT file
MAXSEG 10 LCSCRMTHR the total number o¢f segments
possible in two user specified
boundaries
MAXSEG 10 GPeBLK the total number of segments
possible in twc user specified _
boundaries !
MAXVEC 32767 LIMITS largest number of vectors ‘
allowed 1in an CLPARS data tree :
(system dependent on integer ;
size, Z**(number of bits in an :
integer - 1) =1) :
X
MECLPR 3 RNKCRL measurement by class pair type 1
of ranking ;
MBYCLS 2 RNKCRL measurement by class type ¢f i
ranking]
.
MENUMX 20 OPTICON the maximum number of menus per -
program name
MENVEC -1 DISPLAY the vector id in the TV file
indicating that the vectcr is
the mean vector
MESVEC 1 PVFILE the entry numter of th~
measurement vector in the °
file
MICRO 6 CISPLAY the display code for a
one-~space micro plot
MRW 1 SCREEN index to the number of rows 1in
the cluster plot grid
NC 18 SCREEN index to the maximum number of
classes that can be displayed

on a one space 'macro' display |
at any one time

Location

CLPARS Parameter Limits -- H
Alphabetized

Lescription

- - G = S D G A D e W D S SR R @R G S T M G WS e D D R R D D G M WS D G T R M P AP S N e G YD o A Ee W e e A

e
Farameter Value
NCL 12
NCIMEN 3
LNDISFE 6
NEW 1
NFIXFL 10
NINCLN 9
NL 4
NLNGEE 2
NMVLGG 3
NNUSEL 5
NODENL 2
NCDLEN 4
NODLVL 1
NOKIDS 3
NOSCRN 19

SCREEN

KNKORL

LIMITS

STANDARL
STANDARL

LIHDR

TIFILE

TIFILE

LOGTYPE

LIHDR

LISTRC

STANDARL
LISTRC

TIFILE

SCREEN

index to the numbter of cclumns
in the cluster plot grid

the index in the LI file array
for the dimensionality

the maximum number of difterent
display tyres found in CLPARS

new-file-to-be-opened indicator

the number of CLPARS fixed
files

number of
ncdes

incomplete logic

the code for accessing the node
level of a node

the code for &accessing the
number of lowest nodes beneath
a2 node

nearest mean vector logic nodes

number of nodes actively wused
in logic tree

number-of-nodes~-at-next-level
index (number of children below
the current nocde)

maximum length of a node name

index to the current logic
node's level in the logic tree

the code for accessing the
number of children at a node

the number of screen
coordinates in the CM file

CLPARS FParameter Limits -- H

Alrhabetized

Location

Lescription

NCTSET

NOVECS

NCZCCM

NRSTNB

NUMCLS

NXTAVN

NXTEND

CFF

CEFNLEN

OLD
ON

CNESPC
GFTLE

10

CISFLAY

TIFILE

DISPLAY

LOGTYPE
RNKORD

LIHDR

LIHDR

DISPLAY

CPTION

STANDARD
DISPLAY

DISPLAY
OPTION

252

the displsy code indicating
that the display is not set

the code for accessing the
number of vectors at a node

the flag indicating that

zooming 1is not in effect
nearest neighbor logic nodes

the index in the LI file
for the number of classes

array

next available node entry in LI
file

next open ncde entry at end of
file

the display flag value in a U[i
file 1logical entry that means
the class should not be
displayed CR the screen
coordinate flag in the LV file

header that means the screen
coordinates have not heen
computed

the length of the option file

name (OFTICN.CLP)
old-file-to-be-opened indicator

the display flag value in a [I
file 1logical entry that means
the class should be displayed
OR the screen coordinate flag
in the L[V file header that
means the screen coordinates
have already been computed

one-space indicator
the option file (OPTION.OLP)

logical entry size
=((MAXCPT+1)/2) +1

' OLPARS Parzmeter Limits -- h

' Alphabetized
l Farameter Value Location Cescription
l CFThLUM P RNKORL the index in the [I file array '
for the option number cf the E
creating command
CTHER 4 CHARTYPE means character is not a
LETTEK, CIGIT, or PASCII
character
OVRALL 1 RNKCRC overall type of ranking
indicator
PAIRWS 1 LCGTYPE pairwise logic nodes
PASCII 3 CHARTYPE means character is a visible

({printable) ASCII char. other
than a CIGIT or a LETTER

PGMLEN 10 OCPTICN the max imum number of
characters allowed in a program ,
name i
PP 5 TIFILE the code for accesssing the
parent pointer of a ncde
PRNTND 3 LISTRC index to the parent node of the
current logic node
PV 6 FCLS projection vector file code
(FCL)
PVHNE 18 LENGTH the length (in real elements)
of the projection vector file
header
PVLENE 1 LENGTH the length (in real elements)

of a logical entry of the
projection vector file

PVNITM 6 DISPLAY the number of PV file header
elements referenced by
subrcoutines FVGHLCR and PVPHLDR

QUIT -1 STANDARD the standard exit value
response from 'TRMGET'

REAL 0 STANDARL read indicator to 'CPEN'!
routines

D et

CLPARS Parameter Limits -- H

Alphabetized
Farameter Value Location Pescription
RECTAN 0 DISPLAY the indicator that rectangular
scaling 1s to be wused for a
two-space display
RNKCPT 5 RNKORL the index in the LI file array
for the rank order option
RNKCRE 3 CISPLAY the display code for a rank
order display
RNKPRM 6 RNKCRL the index in the DI file array
for the rank option parameters
S1 7 FCLS scratch1 file code (FCL)
S THNE 1 LENGTH the length (in real elements)
of the scratchl1 file header
S1LENE 1 LENGTH the length (in real elements) .
of a logical entry of the b
scratch1 file
SINITM) DISPLAY the number of S1 file header
elements referenced by
subroutines S1GHDR and S1PHDR
SAVE 0 STANDARD creating-a-permanent-file
indicator
SBTMAF 21 BITMAP the element number in an LI
file entry at which the classes
present bitmap starts
SCzNUM 13 SCREEN number of elements of screen ;
coordinate infor- mation used]
for two-space displays j
SCATTR 2 DISPLAY the display code for a k
two-space scatter plot
SIBLND 5 LISTRC index to the sibling node of T
the current logic node
|
SM 9 FCLS saved matrix file code (FCL)

254

S T

L T SRR,

Parameter

CLFARS Farameter Limits -- H
Alphabetized

Lescription

- - S G G D R S D D e D D D L Ny W G5 D S e S G D P A R M SR P e D e EP e S D YD G A e G WD W e

SMLEKE

SP

SQUARE

SRTFLG

SUBPGM

SV

SVHNE

SVLENE

TABSIZ

TIFILE

TIHSIZ

TL
TLHNE

TLLENE

Value Locaticn
114 LENGTH
51 LENGTH
€ TIFILE
1 CISPLAY
7 RNKCRLC
1 INSGLBL
8 FCLS
2 LENGTH
59 LENGTH
100 TIFILE
1 FTYPE
105 TIFILE
2 FCLS
2 LENGTH
12 LENGTH

the length (in real elements)
of the saved transformation
matrix file header

the length (in real elements)
of a logical entry of the saved
transformation matrix file

the code for accessing the
sibling pointer of a node

the indicator that square
scaling 1is to be wused for a
two-space display

the index in the LI file array
for the sort sort flag

signifies to INSPGM that the
calling routine was c a
subprogram

saved vector file code (FCL)

the length (in real elements)
of the saved vector file

the length (in real elements)
of a logical entry of the saved
vector file

the maximum size of a TI entry
table

the tree information file type
indicator

the size (in elements) of the
TI file header

tree list file code (FCL)

the length (in real elements)
of the tree list file header

the length (in real elements)
of a logical entry of the tree
list file

TSI PPN -SEE SO SYPEPT U EDRDPR

CLPARS Parameter Limits -- H

Location

Cescription

Alrhabetized

Parameter Value
TRELEN 8
TVFILE 2
TVHENE 11
TWOSPC 2
USAGE 2
USEL 1
VP 11
VRNLEN 30
wC 5
WL 3
WID 0
WRITE 1
WS 1
ZCOM 1

STANDARD

FTYPE

TVFILE

DISPLAY
CALUN
CALUN

TIFILE

INSGLBL

SCREEN

SCREEN

DISPLAY

STANDARLD

SCREEN

DISPLAY

256

maximum length of a treename

the tree vector file type
indicator

the tree vector file's header
entry size

two-space indicator

usage portion of 'Luntbl’

value to indicate that a 'LUN’

is used

the code for accessing the
vector pointer to the vectors
of a node in the TV file

length of a Hollerith string
representing a variable name

index to the number of display
units in character width

index to the number of display
units in display width

dummy parameter for btmap
routines
write indicatoer to *CPEN!
routines

index to the number of display
units in screen width

the flag indicating that
zooming is in effect

" CLPARS Parameter Limits =~ H

l According to File Locaticn
' Farameter Value Location Parameter Value Location
EMFSIZ 2 EITMAF MAXSEG 10 DSCRMTHR
SETMAP 21 BITMAP
BUFSIZ 128 FACT
FREE 0 CALUN FLAMSZ 13 FACT
LUNFTR 1 CALUN MAXEUF 1 FACT
MAXLUN 15 CALUN MAXFIL 15 FACT
USAGE 2 CALUN
USEL 1 CALUN CM 1 FCLS
LI 4 FCLS ‘
ALPHA 1 CHARTYPE CV 5 FCLS
ALPHNM Z CLARTYPE HS 10 FCLS
ANYCHR 3 CHARTYPE LL 3 FCLS
DIGIT 2 CHARTYPE PV 6 FCLS
LETTER 1 CHARTYPE S1 7 FCLS
CTHER L CHARTYPE SM 9 FCLS
PASCII 3 CHARTYPE SV 8 FCLS
TL 2 FCLS
ACCESS 0 DISPLAY
ANGLE 0 DISPLAY FIXELD 5 FTYPE
CLUSTR 1 DISPLAY LIFILE 3 FTYPE ;
CCNMAT 4 CISPLAY LVFILE 4 FTYPE i
PINITM 17 CISPLAY TIFILE 1 FTYPE : L
CVNITM 4 DISPLAY TVFILE Z FTYPE
HGT 0] DISPLAY
IGNORE =1 DISPLAY MAXSEG 1C GP2BLK
INDI 0 DISPLAY
MACRO 5 DISPLAY HSTBSZ 503 HISTRY
MENVEC -1 DISPLAY INITHR 5 HISTRY
MICKO 6 DISPLAY MAXHSF 20 HISTRY ;
NCGTSET 0 DISPLAY MAXNAM 9 HISTRY
NOZOCM 0 DISPLAY
OFF 0 DISPLAY MAIN 0 INSGLBL
ON 1 DISFLAY SUBPGM 1 INSGLBL
ONESPC 1 DISPLAY VRNLEN 30 INSGLBL
PVNITM 6 DISPLAY
RECTAN 0 DISPLAY LEVEL1 0 INSTRU ,
RNKORD 3 DISPLAY i
g SINITM 4 DISPLAY CMHNE 97 LENGTH .
! SCATTR 2 DISPLAY CMLENE 0 LENGTH .
} SQUARE 1 DISPLAY DIHNE 1 LENGTH 1-
TWCSPC 2 DISPLAY DILENE 1 LENGTH |
WID 0 DISPLAY DVHNE 1 LENGTH f
ZOOM 1 DISPLAY '

r—yrey e

5 257

N

— e e g

CLPARS Parameter Limits -- H
According to File Location

CVLENE
HSHNE
HSLENE
LLHNE
LLLENE
PVHNE
PVLENE
S 1HNE
S1LENE
SMHNE
SMLENE
SVHNE
SVLENE
TLHNE
TLLENE

LIKENE
LILENE

ALIFLG
LDSLIM
DDSNLN
LNCRNT
LVNELM
NINCLN
NNUSEL
NXTAVN
NXTEND

EXMLIM
MAXBDY
MAXBIN
MAXBPT
MAXCLS
MAXDIM
MAXVEC
NDISP

FKIDND
LSTRSZ
LVYLOGK
LVRJCT

- N
-_— et 2 OV NI =

-
-— wm N -
NDNDO N = &

272

N
n

FLWNWOWOOo N —

Location

LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LERNGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH
LENGTH

LIFILE
LIFILE

LIHDR
LIHDR
LIHDR
LIHDR
LIHDR
LIHDR
LIHDR
LIHDR
LIHDR

LIMITS
LIMITS
LIMITS
LIMITS
LIMITS
LIMITS
LIMITS
LIMITS

LISTRC
LISTRC
LISTRC
LISTRC

Parameter

NCDENL
NCDLVL
PRNTHND
SIBLND

CLSLEN
GRPLCG
INCPLT
LOWEST
NMVLOG
NRSTHB
PAIRWS

LVHENE
LVLMIN

HDRLEN
MAXOPT
MAXPGM
MENUMX
OFNLEN
OPTLE

PGMLEN

MESVEC

CLPEMS
CLSEMS
bC

CSPCHR
MBCLPR
MBYCLS
NDIMEN
NUMCLS
CPTNUM
OVRALL
RNKOPT
RNKPRM
SRTFLG

Value

=SNTWORHO N &= VT =

-
W pw

—_
wn

1C6

- N
oo

-
OWw

—

~NOUN 2N EWRNDWoO — =W

Location

LISTHC
LISTRC
LISTRC
LISTRC

LCGTYPE
LCGTYPE
LCGTYPE
LCGTYPE
LOGTYPE
LCGGTYPE
LCGTYPE

LVFILE
LVFILE

CPTION
CPTION
OPTION
CPTION
GPTION
CPTION
CPTION

PVFILE

RNKORD
RNKCRD
RNKORLC
RNKCRL
RNKORL
RNKORD
RNKCRL
RNKCRLC
RNKORD
RNKORLD
RNKORD
RNKCRLC
RNKCRD

258

"

CLPARS Parameter Limits -~ H
According to File Lccation

Farameter Value Location Parameter Value Location
' A 7 SCREEN QUIT -1 STANLARL
B 8§ SCREEN REAL 0 STANDARL
C G SCREEN SAVE 0 STANLCARE
T 10 SCREEN TRELEN 8 STANDAKL
- LS 19 SCKEEN WRITE 1 STANDARLD
E 15 SCREEN
F 16 SCREEN BPET 12 TIFILE
i G 17 SCREEN CAPSIZ 12 TIFILE
; HC 6 SCREEN ENMEAN 17 TIFILE
HL 4 SCREEN FCP 7 TIFILE
HSN 2 SCREEN FLEP 8 TIFILE
; LCH 13 SCREEN FRELST 13 TIFILE ’
L(MRW 11 SCREEN LNBP 10 TIFILE
NC 18 SCREEN LNLP g TIFILE
NCL 12 SCREEN NL 4 TIFILE .
NOSCRN 19 SCREEN NLNCLE 2 TIFILE ,
1 SCZNUM 13 SCREEN NOKIDS 3 TIFILE
| WC 5 SCREEN NCVECS 1 TIFILE
; WD 3 SCREEN PP 5 TIFILE i
WS 1 SCREEN SP 6 TIFILE]
TABSIZ 10¢ TIFILE ;
MAXMTR 10 SMFILE TIKSIZ 105 TIFILE P
VP 11 TIFILE
APPEND 2 STANDARL
CMCLEN 10 STANDARD TVHENE 11 TVFILE
DATA 1 STANDARD
DELETE 1 STANDARD
EOF -1 STANDARL
EOS 0 STANDARL
ERRCR -1 STANDARL
FNMLEN 34 STANDARD
HEALER 0 STANDARLC
HELP -2 STANDARL
LOGIC 2 STANDARL
MAXLIN 133 STANDARD j
NEW 1 STANDARD

NFIXFL 1 STANDARD

0
b NCDLEN 4 STANDARL
' 0

OLD STANDARL ' ?

APPENDIX J

File type naming conventions
of GCLPARS files

This text is dedicated to the cause of 'keeping straight' all
the different file name types (or file extension names) found
within the RSX-11M version of portable CLPARS. As 1is known by
those people who are familiar with LEC's RSX, a file specification
looks 1like:

<filename>.<{type>;<version number>

where <filename> is a 0~-9 character string of letters and/cr
digits,
{type> is a 0~-3 character string of letters and/or
digits, and
<version number> is an octal number, used in uniquely
identifying files with the same
<filename> and <type>.
This text will only deal with the <type> portion of the RSX

filename.

First, you must be introduced to the abbreviations used here.
The following mneumonics refer to specific software tools used in

constructing CLPARS.

We can now proceed to the file type (extension) naming
conventions used 1n the portable CLPARS project. Note that the
period (.) portion of the file specification will preceed all the
following <type> names (this is tc remind you that the 3 characters

represent file extension names).

.AFT
. ALG
«ASM
.BLD
+CML
.LCL
.LCC
.FIG
+FTN

B el

File type (extension) naming convensicns -- J
AFT - PAR's FCRTRAN preprocessor
LSR - CEC Standard FRunoff (VMS text formatter)
Fup - CEC's FCRTRAN IV Plus compiler
INC - PAR's 'include' utility program
LER - DEC's object module librarian
MAC - DEC's macro assembler
MUN - another name for TEC
PIP - DEC's file transferring program
RNO - (runoff) a text formatter
TEC - TECo (text editor and corrector)
TKB - DEC's task builder (linker)

OLPARS programs to be 'AFT' processed

textual alg.rithms to be processed by 'RNO'

OLPARS assembly files that must be 'INClude' processed
task build (linker) command files

RSX-11M '€' processor command files

AFT or assembly declaration files (to be 'INCluded!')

text files already processed by the 'RNO' utility

OLPARS figure documents (post 'RNO' processed, pre 'INC!')
FCRTRAN files to be processed by 'Fip!

File type (extension) naming convensions ~- J

. KLk

<INC
+MAN
+MAC
.CBJ
.CDL
.CLP
. FAM
.PIC
. PRM

. PTH
. KNO
.SPC

«SRM
.SRC
.TEC
.TPL

.TSK
<TXT
- USM

c¢ocumentaticn headers for CLPARS programs

(to be '"INCluded')

'IkClude' processor input files

manuals after 'KNO' processing

assembly files tc be processed by 'MAC!

pirogrem object modules used by task builder and librarian
task build (linker) overlay description files

OLPARS binary informéiion files

CLPARS programmer aide dcocuments before 'RNO' processing
pictures (figures) to be processed by 'RNO!

CLPARS programmer's reference manual before 'RNC'
processing

path name files used by the 'INClude' processor

text files to be processed by the 'RNC' utility

OLPARS program specification documents (tc be 'RNC'
processed)

OLPARS software reference manual tefore 'RNO' processing
CLPARS 'AFT' source files that must be 'INClude' processed
TECo command files

template files used in generating documentation or ccmmand
files

task images of executable programs

Miscellaneous text files

CLPARS user manual documents before 'RNC' processing

262

S n e et sy

File type (extensicn) raming conversions -- J
File Types and their Frocess kelactionshigs

Atout Files and Frocesses

The chart on the following page shows the relationships
between the previously mentioned CLPARS file types anc processes.
In the chart, processes are represented with bcxes, file types are
deroted with an initial ©period (.). The € symbol surrounding
processes and file types indicates which operaticns are rperformed
by the KSX-11M command file processor. Lines intersecting process
boxes show that the file at the other end of the line 1is wused as

input to the process ("Arrowed" lines are used, aiso).

& e
6 eeeemmeeees eeeee—ea- €
€ ~= JHER (== | MUN 1 <= LCC Ke= ! RNC i <= .SEC €
g | e eeeme———— ALG e
e | d €
6 -- .LCL CCMMENT.TEC €
e] €
e | ——m——|m—— eceaca—=- €
@ 1-- .FIG <-- | MUN | <= .LOC <--} RNO | <- .PIC e
e I eeeeseaa- eseeceee- €
e | €
e | .SRC €
€ | i e
e | e jm=—- eemseeeee-s eeeceaces €
é - INC i ==> JAFT > | AFT t ==> JFTN => | F4pP I
é ————je——— emmemeaea cee;cenea- 8
€ i i e
6 PTH i €
@ 1 : €
€ ——m——fm———— eceeeeao-- i e
€ H INC ! ==> MAC > | MAC | = .CEJ o= €
€ T T / N\ e
€ H / \ e
6 . ASM (main programs) / \ (subrtns.) @
€ / \ e
€ eeceen=- /- e €
e +ITSK (== | TKB H H LBR H €
€ Relationships between R LT T L €
e files and processes H H 2]
e .BLD .CLB <ecemmceua-- @
e .CDL e
e e
g@@@@@@G@@éé@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@Qé@@@@@@@@@G@@@@@Q@@@@@g
@ ccmemecee ememameee eemeaeea- e
e | INC 1==> .PRM <>} PIP 1==> JRNO <>} DSR l==> .MAN €
€ cececee-- R e I T TP e
e - .USM e
e 1= +PAM e
e - .SRM €
@ e
feepeaceepeppepepLpeLRApALLPERPGRPLACRPLPANALARAALOPEACRECBEAE RGP CER

Miscellaneous <-- | .TSK { <=-= .CLP
text files = = = cacemce-- .TXT (some, not all}

264

IR AT

AFFENLCIX K

Miscellaneous Text Files Created by
CLPARS Commands

The follcwing 1list contains the names of the various text
files <created by CLPARS commands along with the name of the
creating commmand (in parenthesis). Kote, these files have no -
<type> name.
CLASIFY1 - list of logic nodes and number of vectors

assigned to each node.
(LOGEVAL) !

CLASIFYZ - list of vector identifiers and logic nodes i

to which they were assigned.
(LCGEVAL)

CCNMAT ~ confusion matrix listing. .
(LOGEVAL, NMEVAL, PWEVAL) :

EIGEN ~ eigenvalue listing.
(L1EIGV, LZ2EIGV, REPRCJECT, SIEIGV,
SZEIGY)

LOGCUMP - logic tree dump.
(PRTLOG)

MISCLASS - vector misclassification listing.
(CREATLCG, LCGEVAL, KMEVAL, PWEVAL)

SAVMTR - a saved matrix listing.]
(MATRIX) .

TREELUMP - data tree dump. i
(PRTLCS)

VECIDS -~ new=-o0ld vector identifier relationship ;>
listing.
(MAKETREE)

265

. L e N
SESEEERREEN A B RS- Y AU

O

CLPARS Programmer and System Maintenance Manual
INCEX
INDEX

"fixed” fileS . & o o o o o ¢« o o o e s e s e e« . 218

"variable” files . ¢« ¢ ¢« ¢ ¢ 4 ¢ ¢ ¢ s e o s e e « o o« 220

(graphics pkg.) EKASE e e e e e e e e . 159

(graphics pkg.) LINSEG« e e e . e e . . 159

(graghics pkg.) MARK . . + ¢« + « « « .+ 159

(graphics pkg.) MCVE . & & &« 4 ¢ ¢ ¢ o 4 o o o o o o « 156]

(graphics pkg.) RCTNGL . . . v e e e e e e« . . . 159 L

(graphics pkg.) TEXT e e e e e e e e e s e e s e o. 158

ABSTRACT FILES AND INPUT/OUTPUT . &« & ¢ ¢ o & o & o« o U %

ACCITICNAL CCNSIDERATICONS . . &+ &« ¢ « + « o o o « « o 35

ASFECTS CF PCRTABILITY . &+ v v 4 ¢ o &+ o o o o« o « « « 5

BATCH PROCESSING IN OLPARS . . ¢« ¢ v v 4 ¢ « o« o « « « 1€8 ,

BCOLEAN STATEMENT INTERPRETER 167 |
4

CCMMAND INPUT PRCCESSOR (CIP) v v v v w 4 o v o o v o 2, T, 177 1

CCMMAND STRUCTURE & &« v & & ¢ 4 ¢« o o s o o « s o o o« O '

CCNFUSICN MATRICES . v & & ¢ v ¢ o o o o & o o o o« + + 133

CREAFX . . . -

CREATING NEW TREES FROM OLD TREE C e e s e e e e e y2

CURRENT MIN-MAX CCORLCINATES « v o« ¢« & ¢ o o« & & + « « 115 j

DATA TREE INPUT/OUTPUT e o e s e+ e 4 4 s e & e e« « o« o 183

DESIGH OVERVIEW . . e s e e e 2

DISPLAY FILES USEL IN MEASUREMENT EVALLATICN e+« o . 126

ESCAFE CHARACTERS &+ & v ¢ 4o & o o o o o o o » o « » « 141

EXPANDABILITY . . B 4

EXPANDING CLPARS UNDER RSX 11M e v 4 e s e s e e & & . 197

FGET . . L] L] * * L d * . . . L] * . L] - * * L] . . 22

FILE ACCESS AND CONTRCL TABLE (FACT) « « . « . 17-18, 22, 21§

FILE CCDE TABLE (FCT) & &+ & & & o o o o o o o o o o« o 16, 18

FILE CODES FCR "FIXED"™ FILES (FCDs) . « « o o o o o o 17

FILE CCDES FCR "YARIABLE"™ FILES (FCDs) . . . « « « .+ « 17 ' 4

FILE DESCRIPTORS . . . e o s 4 e s e o o o o o 17-1E, 22

FILE SYSTEM ROUTINES AND USAGE e s 4 e s e s e e s s« 13

FILENAMES VERSUS TREE NAMES . . « ¢« ¢ ¢« ¢« ¢ o « « « « 176

FILGET . L . o L] . . L4 . L] * * ” * - L2 L[4 - » L[4 * * L L] 160

FILPUT . . O T

FCRTRAN CCDE GENERATION s s e s e s e e 4 s s s s s . 165

FPUT ¢ ¢ ¢« o v o o o o o s o o s s o« o o o o o o o & o« 22

GEN (generate CLPARS user's fixed files) 231
GRAPHICS INPUT UTILITY PRCGRAM (GIN) « . . . 157 w
GRAPHICS OUTPUT UTILITIES . . . ¢« ¢ ¢« ¢ ¢« « & « « » o 158

HELP FUNCTION ON RSX-11M 3 199

CLPAKS Programmer and System Maintenance Manual
INTEX

INSHSP (Ilistrumentation EiStory file Patch routine) . 234
Instrumentation Package « . « ¢ ¢« + + o « . 203
Instrumentation Fackage Programs « ¢« ¢« « « « « 212

Level I File Access Routines . « ¢« o« ¢ &« ¢ &+ o« v o« o o 22
Level I Manipulation Routines . . « « ¢ ¢« ¢« « ¢« « » + 18
Level II program naming conventions 2l
Level II Routines . . ¢ ¢ ¢ ¢« ¢ ¢ o ¢ o o o o o « o« o« cH4
LCGIN = LOGOUT v ¢ v ¢ ¢ ¢ o o o o o o o o o s « = o + 174

MAKGPT (make the CLPARS option file) « « . 235
Miscellanecus Text Files in CLPARS « . . 265

NOTES CN TERMINAL I/C &« ¢« ¢ & ¢ ¢ ¢« o o o s+ o o » « «» 156, 163
NOTES CN TEXT FILE I/O . L) . * . L . - . - . L) . . - . 163

OCLOSE &« &« &« 4 ¢ ¢ o o o o o o o o o s a o s o o + « « 13, 20

CCREAT . v ¢« v ¢ ¢« o o o o o o s o o o o o o o s« &« « « 13, 18, 216

ODELET & 4 ¢ v ¢ o o o o o o o s s o o o o o o o o s« 20

ODTLCMP (OLPARS Data Tree Dump) e+ e v s s e s e & & o 236

OLPARS FILE "FREE"™ LISTS e b e 4 e s e & e e & . U4

OLPARS 1I/0 notes (for RSX 11M) - B ,
OLPARS TRANSPORTATION CCNSIDERATIONS . . « . « . « « .+ 5 .
CLTCMP (OLPARS Pata Tree Dump) . . « + ¢ &+ & « « « &+ » 239

OMOVE . . * o o s s s s e s e o e s s e o u 13, 20

ONE-SPACE DISPLAYS (MICRO AND MACRO) . . . + + « « + . 116

OCOPEN &« & & o o « o o o s o o o o o o« s o o s o« = & « 13, 18, 20, 219

GEENFX v & ¢ ¢ o ¢ o« o o v o o s o o o o o o 2 o o &« o« 21§

CRENAM . . . e s s s s s s s s s s e e o o o » s+ 13, 20

ORIGINAL MIN-MAX COORDINATES e 4 s s e s s s s e e s . 115

PARAMETER LIMITS . . v v ¢ ¢ o o & o « o o & . e . . 2U2

PORTABILITY '+ & & v ¢ o « o o o o o o« « o o o o o o o« 1,3, 5

PRINTER LISTINGS . & & & ¢ « o o s o o o s s s o« « & « 161

PRCGRAMMER AIDES . . . & ¢ &« « & & & e » s o s o . 230

RSX-11M Block I/0 for CLPARS . . ¢« & « « o « &+ o s « o+ 220, 224

RSX-11M File I/C Communication Paths « . . . 222

RSX-11M file naming conventions « . . . 260

RSX-11M file types and their process relationships . . 263)
RSX-11M I/O nOteS [} 219 ,

RSX-11M logical unit allocatlon s s s e e s s o o & o 222 ;

RSX-11M Record I/C for OLPARS . « . « ¢« ¢ « o o o o o 221, 226 ‘

RSX-11M System LCependent files . . . e e e e w s . . 182 V
RSX-11M task building example (non-overlay) e s o .+ . 22§ -
RSX-11M task building notes for OLPARS 227 {

RSX=11M user files . . ¢ ¢ ¢ ¢ ¢ o ¢« ¢ o o« + o » s o« « 219 j

SCALING IN TWO-SPACE DISPLAYS . . v s ¢« & o o « = « « 115 !
Screen Parameters for One Space [Cisplays « . . 122

TERMINAL CHARACTER INPUT/QUTPUT . . « . « ¢« « o« « « o« 136
TERMINAL GRAPHICS INPUT/QUTPUT . « . . &+ ¢ ¢« ¢ ¢ & o o 157

OLPARS Programmer and System Maintenance Manual

INLEX

TERMINAL SCREEN CCORLDINATES . . « ¢« ¢« « ¢« « « o « « o 1C9

TEXT FILE IKPFUT/OUTPUT « &« ¢ ¢ ¢ ¢ o o ¢ o o o o « « o 160

THE CCMMUNICATICNS (CM) FILE . . « ¢« ¢ ¢ ¢ ¢ o & « o o 27

THE DISPLAY INFCRMATICN (DI) FILE . . « « « ¢« ¢« « « . 96

THE DISPLAY VALUE (DV) FILE . ¢« ¢« ¢ ¢ ¢ o o « « « « o 102

THE LCGIC INFCRMATION (LI) FILE .« « ¢ ¢ « o « o o « o« 52

Th< LCGIC LIST (LL) FILE . . ¢ « ¢« ¢ ¢« ¢ ¢« o ¢« o« o« o £6

THE LCGIC VALUE (LV) FILE . . e e e e s s e . s . . €O

THE PRCJECTICN VECTGR (PV) FILE e s s s e e« + 4« e « . 105

THE SAVEL TRANSFCRMATICON MATRIX (SM) FILE ¢©¢0 !
THE SAVEL VECTCRS (SV) FILE . . « . « « + & ¢« & ¢« « . &6 "
THE TREE INFCRMATION (TI) FILE(S) . « « « « « o « « o 2§ :
THE TREE LIST (TL) FILE . . ¢« &+ « ¢« « ¢« o « o« &« « « o« 5C 4
THE TREE VECTOR (TV) FILE . . e e« o o s e s o « o H7 3
TREE INFCRMATICN (TI) FILE EXAMFLE e« e« o o s e« o . . kO

TRMCET ¢ ¢ & ¢ o o o o o o o o o o s o o o » s o « » o« 149 :
TRMPUT & ¢ 4 o ¢ o o o o o o o s o o o o o o o o o« o o« 143

TwC-SPACE DISFLAYS (SCATTER AND CLUSTER) . . « 65 .
user data and legic files .« . & ¢ ¢ ¢ ¢ o« & « o o« « « 220

USER FILE DEFINITICNS . & ¢ ¢ o o o o o o o o s s +» o 10
Usel” fileS on RSX‘T]M] . L) 219 3

